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Introduction 

Basics of Soft Computing 

What is Soft Computing? 

• The idea of soft computing was initiated in 1981 when Lotfi A. Zadeh published his first 

paper on soft data analysis “What is Soft Computing”, Soft Computing. Springer-Verlag 

Germany/USA 1997.] 
 

• Zadeh, defined Soft Computing into one multidisciplinary system as the fusion of the 

fields of Fuzzy Logic, Neuro-Computing, Evolutionary and Genetic Computing, and 

Probabilistic Computing. 
 

• Soft Computing is the fusion of methodologies designed to model and enable solutions to 

real world problems, which are not modeled or too difficult to model mathematically. 
 

• The aim of Soft Computing is to exploit the tolerance for imprecision, uncertainty, 

approximate reasoning, and partial truth in order to achieve close resemblance with 

human like decision making. 

• The Soft Computing – development history 

 
SC = EC + NN + FL 

Soft  Evolutionary  Neural  Fuzzy 

Computing  Computing  Network  Logic 

Zadeh  Rechenberg  McCulloch  Zadeh 

1981  1960  1943  1965 

       

EC = GP + ES + EP + GA 

Evolutionary  Genetic  Evolution  Evolutionary  Genetic 

Computing  Programming  Strategies  Programming  Algorithms 

Rechenberg  Koza  Rechenberg  Fogel  Holland 

1960  1992  1965  1962  1970 
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Definitions of Soft Computing (SC) 

 

Lotfi A. Zadeh, 1992 : “Soft Computing is an emerging approach to computing which parallel 

the remarkable ability of the human mind to reason and learn in a environment of uncertainty 

and imprecision”. 

The  Soft  Computing  consists  of  several  computing  paradigms  mainly : 

 

Fuzzy Systems, Neural Networks, and Genetic Algorithms. 

• Fuzzy set :  for knowledge representation via fuzzy If – Then rules. 
 

• Neural Networks :  for learning and adaptation 
 

• Genetic Algorithms :  for evolutionary computation 

 

These methodologies form the core of SC. 

Hybridization of these three creates a successful synergic effect; that is, hybridization creates a 

situation where different entities cooperate advantageously for a final outcome. 

Soft Computing is still growing and developing. 

Hence, a clear definite agreement on what comprises Soft Computing has not yet been reached. 

More new sciences are still merging into Soft Computing. 

Goals of Soft Computing 

Soft Computing is a new multidisciplinary field, to construct new generation of Artificial 

Intelligence, known as Computational Intelligence. 

 

• The main goal of Soft Computing is to develop intelligent machines to provide solutions 

to real world problems, which are not modeled, or too difficult to model mathematically. 

 

• Its aim is to exploit the tolerance for Approximation, Uncertainty, Imprecision, and 

Partial Truth in order to achieve close resemblance with human like decision making. 

 

Approximation : here the model features are similar to the real ones, but not the same. 
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Uncertainty : here we are not sure that the features of the model are the same as that of the 

entity (belief). 

 

Imprecision : here the model features (quantities) are not the same as that of the real ones, 

but close to them. 

Importance of Soft Computing 

 

Soft computing differs from hard (conventional) computing. Unlike 

hard computing, the soft computing is tolerant of imprecision, uncertainty, 

partial truth, and approximation. The guiding principle of soft computing is to 

exploit these tolerance to achieve tractability, robustness and low solution cost. In 

effect, the role model for soft computing is the human mind. 

The four fields that constitute Soft Computing (SC) are : Fuzzy Computing (FC), 

Evolutionary Computing (EC), Neural computing (NC), and Probabilistic 

Computing (PC), with the latter subsuming belief networks, chaos theory and parts 

of learning theory. 

Soft computing is not  a concoction,  mixture, or combination, rather, 

Soft computing is a partnership in which each of the partners contributes 

a  distinct  methodology  for addressing  problems in its domain. In principal 

the constituent methodologies in Soft computing are complementary rather 

than competitive. 

 

Soft computing may be viewed as a foundation component for the emerging 

field of Conceptual Intelligence. 

 



5 
 

Fuzzy Computing 
 

In the real world there exists much fuzzy knowledge, that is, knowledge which 

is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic in nature. 

 

Human can use such information because the human thinking and reasoning 

frequently involve fuzzy information, possibly originating from inherently 

inexact human concepts and matching of similar rather then identical 

experiences. 

 

The computing systems, based upon classical set theory and two-valued logic, 

can not answer to some questions, as human does, because they do not have 

completely true answers. 

 

We want, the computing systems should not only give human like answers but 

also describe their reality levels. These levels need to be calculated using 

imprecision and the uncertainty of facts and rules that were applied. 

 

Fuzzy Sets 

 

Introduced by Lotfi Zadeh in 1965, the fuzzy set theory is an extension of 

classical set theory where elements have degrees of membership. 

 

• Classical Set Theory 
 

−  Sets  are  defined  by  a  simple  statement  describing  whether  an 

 

element having a certain property belongs to a particular set. 

 

−  When set A is contained in an universal space X, 
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then we can state explicitly whether each element x of space X "is or 

is not" an element of A. 

 

− Set A is well described by a function called characteristic function A. 

This function, defined on the universal space X, assumes : 

 

value 1 for those elements x that belong to set A, and 

 

value 0 for those elements x that do not belong to set A. 

 

The notations used to express these mathematically are 

 

 

Α : Χ →  [0, 1] 
 

A(x) = 1 , x is a member of A Eq.(1) 

A(x) = 0 , x is not a member of A  

 

Alternatively, the set A can be represented for all elements x ∈ X 

by its characteristic function A (x) defined as 

 

 

1 if x ∈  X 

A (x) = Eq.(2) 

0 otherwise 

 

− Thus, in classical set theory A (x) has only the values 0 ('false') and 1 

('true''). Such sets are called crisp sets. 
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• Crisp and Non-crisp Set 
 

− As said before, in classical set theory, the characteristic function A(x) 

of Eq.(2) has only values 0 ('false') and 1 ('true''). 

 

Such sets are crisp sets. 

 

−  For Non-crisp sets the characteristic function A(x)can be defined. 

 

� The characteristic function A(x) of Eq. (2) for the crisp set is 

generalized for the Non-crisp sets. 
 

� This generalized characteristic function A(x)  of  Eq.(2)  is called 
 

membership function. 

 

Such Non-crisp sets are called Fuzzy Sets. 

 

− Crisp set theory is not capable of representing descriptions and 

classifications in many cases; In fact, Crisp set does not provide 

adequate representation for most cases. 

 

− The proposition of Fuzzy Sets are motivated by the need to capture and 

represent real world data with uncertainty due to imprecise 

measurement. 

 

−  The uncertainties are also caused by vagueness in the language. 
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• Example 1 : Heap Paradox 

 

This example represents a situation where vagueness and uncertainty are inevitable. 

- If we remove one grain from a heap of grains, we will still have a heap. 

- However, if we keep removing one-by-one grain from a heap of grains, there will be a 

time when we do not have a heap anymore. 

- The question is, at what time does the heap turn into a countable collection of grains 

that do not form a heap? There is no one correct answer to this question. 
 

• Example 2 : Classify Students for a basketball team This 

example explains the grade of truth value. 

- tall students qualify and not tall students do not qualify 

- if students 1.8 m tall are to be qualified, then  
 

should we exclude a student who is 1/10" less? or should we 

exclude a student who is 1" shorter? 

■ Non-Crisp Representation to represent the notion of a tall person.
 

 

 

 

A student of height 1.79m would belong to both tall and not tall sets with a particular degree of 

membership.As the height increases the membership grade within the tall set would increase whilst 

the membership grade within the not-tall set would decrease. 
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• Capturing Uncertainty 
 

Instead of avoiding or ignoring uncertainty, Lotfi Zadeh introduced Fuzzy 

Set theory that captures uncertainty. 

 

 

■ In the case of Crisp Sets the members of a set are : 

either out of the set, with membership of degree " 0 

", or in the set, with membership of degree " 1 ", 

 

Therefore, Crisp Sets ⊆ Fuzzy Sets In other words, Crisp Sets are 

Special cases of Fuzzy Sets. 
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Example 2: Set of SMALL ( as non-crisp set) Example 1: Set of prime 

numbers ( a crisp set) 

 

If we consider space X consisting of natural numbers ≤ 12 

 

ie X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

Then, the set of prime numbers could be described as follows. 

 

PRIME = {x contained in X | x is a prime number} = {2, 3, 5, 6, 7, 11} 

 

 

 

A Set X that consists of SMALL cannot be described; 

 

for example 1 is a member of SMALL and 12 is not a member of SMALL. 

 

Set A, as SMALL, has un-sharp boundaries, can be characterized by a 

function that assigns a real number from the closed interval from 0 to 

1 to each element x in the set X. 
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• Definition of Fuzzy Set 
 

A fuzzy set A defined in the universal space X is a function defined in X 

which assumes values in the range [0, 1]. 

 

A fuzzy set A is written as a set of pairs {x, A(x)} as 

 

A = {{x , A(x)}} ,  x in the set X 

 

where x is an element of the universal space X, and 

A(x) is the value of the function A for this element. 

 

The value A(x) is the membership grade of the element x in a fuzzy set A. 

 

 

Example : 

 

 

Set 

 

 

SMALL 

 

 

in set X consisting of natural numbers 

 

 

≤ 

 

 

to 12. 

 

 

Assume: 

 

 

SMALL(1) = 1, SMALL(2) = 1, SMALL(3) = 0.9, SMALL(4) = 0.6, 
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SMALL(5) = 0.4, SMALL(6) = 0.3, SMALL(7) = 0.2, SMALL(8) = 0.1, 

SMALL(u) = 0 for u >= 9. 

 

Then, following the notations described in the definition above : 

 

Set SMALL = {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {7, 0.2}, 

{8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Note that a fuzzy set can be defined precisely by associating with each x , 

its grade of membership in SMALL. 

 

 

• Definition of Universal Space 
 

Originally the universal space for fuzzy sets in fuzzy logic was defined only 

on the integers. Now, the universal space for fuzzy sets and fuzzy 

relations is defined with three numbers. The first two numbers specify the 

start and end of the universal space, and the third argument specifies the 

increment between elements. This gives the user more flexibility in 

choosing the universal space. 

 

Example : The fuzzy set of numbers, defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

 

• Graphic Interpretation of Fuzzy Sets SMALL 
 

The fuzzy set  SMALL  of  small  numbers, defined  in the  universal space 
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X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as  

SetOption [FuzzySet, UniversalSpace →  {1, 12, 1}]   

The Set SMALL in set X is :      

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Therefore SetSmall is represented as 

 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace →  {1, 12, 1}] 

 

FuzzyPlot [ SMALL, AxesLable → {"X", "SMALL"}] 
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• Graphic Interpretation of Fuzzy Sets  PRIME Numbers 
 

The fuzzy set PRIME numbers, defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

The Set PRIME in set X is : 

 

PRIME = FuzzySet {{1, 0}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0}, {9, 0}, {10, 0}, {11, 1}, 

{12, 0}} 

Therefore SetPrime is represented as 

 

SetPrime = FuzzySet [{{1,0},{2,1}, {3,1}, {4,0}, {5,1},{6,0}, {7,1}, 

 

{8, 0}, {9, 0}, {10, 0}, {11, 1}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

 

 

FuzzyPlot [ PRIME, AxesLable → {"X", "PRIME"}] 
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• Graphic Interpretation of Fuzzy Sets  UNIVERSALSPACE 
 

In any application of sets or fuzzy sets theory, all sets are subsets of 

 

a fixed set called universal space or universe of discourse denoted by X. 

Universal space X as a fuzzy set is a function equal to 1 for all elements. 

 

The  fuzzy  set  UNIVERSALSPACE  numbers, defined in  the universal 
 

space X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}  is presented as   
 

SetOption [FuzzySet, UniversalSpace 

→ {1, 12, 1}]           
 

The Set UNIVERSALSPACE in set X is :              
 

UNIVERSALSPACE = FuzzySet {{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}, {6, 1},    
 

          {7, 1}, {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}}  
 

Therefore SetUniversal is represented as              
 

SetUniversal = FuzzySet [{{1,1},{2,1}, {3,1}, {4,1}, {5,1},{6,1}, {7,1},   
 

{8, 1}, {9, 1}, 
{10, 1}, {11, 1}, {12, 1}} , UniversalSpace 

→ {1, 12, 1}]  
 

FuzzyPlot [ UNIVERSALSPACE, AxesLable → {"X", " UNIVERSAL SPACE "}] 
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Finite and Infinite Universal Space 

 

Universal sets can be finite or infinite. 

 

Any universal set is finite if it consists of a specific number of different 

elements, that is, if in counting the different elements of the set, the 

counting can come to an end, else the set is infinite. 

 

Examples:  

1. Let N  be the universal space of the days of the week. 

  N = {Mo, Tu, We, Th, Fr, Sa, Su}. N is finite. 

2. Let M = {1, 3, 5, 7, 9, ...}. M is infinite. 

3. Let L = {u | u is a lake in a city }. L is finite. 

 

(Although it may be difficult to count the number of lakes in a 

city, but L is still a finite universal set.) 
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• Graphic Interpretation of Fuzzy Sets  EMPTY 
 

An empty set is a set that contains only elements with a grade of 

membership equal to 0. 

 

Example: Let EMPTY be a set of people, in Minnesota, older than 

120. The Empty set is also called the Null set. 

 

The fuzzy set EMPTY , defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

The Set EMPTY in set X is : 

 

EMPTY = FuzzySet {{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, {8, 

0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} 

Therefore SetEmpty is represented as 

 

SetEmpty = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0}, {5,0},{6,0}, {7,0}, 

 

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

 

FuzzyPlot [ EMPTY, AxesLable → {"X", " UNIVERSAL SPACE "}] 
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 Fuzzy Operations 

 

A fuzzy set operations are the operations on fuzzy sets. The fuzzy set 

operations are generalization of crisp set operations. Zadeh [1965] 

formulated the fuzzy set theory in the terms of standard operations: 

Complement, Union, Intersection, and Difference. 

 

In this section, the graphical interpretation of the following standard fuzzy 

set terms and the Fuzzy Logic operations are illustrated: 

 

Inclusion : 

 

 

FuzzyInclude [VERYSMALL, SMALL] 

 

 

Equality : 

 
 

FuzzyEQUALITY [SMALL, STILLSMALL] 

 

 

Complement : 

 
 

FuzzyNOTSMALL = FuzzyCompliment [Small] 

 

 

Union : 

 
 

FuzzyUNION = [SMALL 

 
 

∪ 

 
 

MEDIUM] 

 

 

Intersection : 

 
 

FUZZYINTERSECTON = [SMALL 

 
 

∩ 

 
 

MEDIUM] 
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• Inclusion 
 

Let A and B be fuzzy sets defined in the same universal space X. 

 

The fuzzy set A is included in the fuzzy set B  if and only if  for every x in 

 

the set X we have A(x) ≤ B(x) 

 

Example :      

The  fuzzy  set  UNIVERSALSPACE  numbers,  defined in  the  universal 

space X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace →  {1, 12, 1}]   

The fuzzy set B SMALL      

The Set SMALL in set X is :     

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Therefore SetSmall is represented as 

 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace →  {1, 12, 1}] 

 

The fuzzy set A VERYSMALL 

 

The Set VERYSMALL in set X is : 

 

VERYSMALL = FuzzySet {{1, 1 

{6, 0.1}, {7, 0 }, 

 

 

}, {2, 0.8 }, {3, 0.7}, {4, 0.4}, {5, 0.2}, 

 

{8, 0 }, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Therefore SetVerySmall is represented as 
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SetVerySmall = FuzzySet [{{1,1},{2,0.8}, {3,0.7}, {4,0.4}, {5,0.2},{6,0.1}, 

{7,0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

The Fuzzy Operation : 
 

nclusion 

 

Include 

 

[VERYSMALL, 

SMALL] 
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• Comparability 
 

Two fuzzy sets A and B are comparable 

 

if the condition A ⊂  B or B ⊂  A holds, ie, 

 

if one of the fuzzy sets is a subset of the other set, they are comparable. 

 

Two fuzzy sets A and B are incomparable 

 

if the condition A ⊄  B or B ⊄  A holds. 

Example 1: 

Let A = {{a, 1}, {b, 1}, {c, 0}} and 

 

B = {{a, 1}, {b, 1}, {c, 1}}. 

Then A is comparable to B, since A is a subset of B. 

Example 2 : 

Let C = {{a, 1}, {b, 1}, {c, 0.5}} and 

 

D = {{a, 1}, {b, 0.9}, {c, 0.6}}. 

 

Then C and D are not comparable since 

 

C is not a subset of D and  

D is not a subset of C. 

 

Property Related to Inclusion : 

 

for all x in the set X, if A(x) ⊂ B(x) ⊂ C(x), then accordingly A ⊂ C. 
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• Equality 
 

Let A and B 

Then A and B if 

and only if 

 

 

be fuzzy sets defined in the same space X. 

 

are equal, which is denoted X = Y 

 

for all x in the set X, A(x) = B(x). 

 

Example. 

 

The fuzzy set B SMALL 

 

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

The fuzzy set A STILLSMALL 

 

STILLSMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, 

 

{6, 0.3}, {7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

The Fuzzy Operation : Equality 

 

Equality [SMALL, STILLSMALL] 

 
 

 

the set X, then we say that A is not equal to B. 
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• Complement            
 

Let A be a fuzzy set defined in the space X.       
 

Then the fuzzy  set B is  a complement  of the fuzzy set A, if and only if, 
 

for all x in the set X, B(x) = 1 - A(x).        
 

The complement of the fuzzy set A is often denoted by A' or Ac or 

 

 

 

A 
 

Fuzzy Complement : Ac(x) = 1 – A(x)        
 

Example 1.            
 

The fuzzy set A SMALL           
 

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 
 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 
 

The fuzzy set Ac NOTSMALL          
 

NOTSMALL = FuzzySet {{1, 0  }, {2, 0 }, {3, 0.1},  {4, 0.4},  {5, 0.6}, {6, 0.7}, 
 

 {7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}} 
 

 

The Fuzzy Operation : Compliment 

 

NOTSMALL = Compliment [SMALL] 
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SC – Fuzzy Computing 

Example 2.            

The  empty  set  Φ and the universal set X, as  fuzzy sets,  are 

complements of one another.          

Φ ' = 

X , 

X' = 

Φ         

The fuzzy set B EMPTY           

Empty = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0}, {5, 0}, {6, 0},  

 {7, 0}, {8, 0}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

The fuzzy set A UNIVERSAL          

Universal = FuzzySet {{1, 1 }, {2, 1 }, {3, 1}, {4, 1}, {5, 1}, {6, 1}, 

 {7, 1}, {8, 1}, {9, 1 }, {10, 1 },  {11, 1}, {12, 1}} 

 

The fuzzy operation : Compliment 

 

EMPTY = Compliment [UNIVERSALSPACE] 
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• Union 
 

Let A and B be fuzzy sets defined in the space X. 

 

The union is defined as the smallest fuzzy set that contains both A and 

B. The union of A and B is denoted by A ∪ B. 

 

The following relation must be satisfied for the union operation 

: for all x in the set X, (A ∪ B)(x) = Max (A(x), B(x)). 

 

Fuzzy Union :  (A ∪  B)(x) = max [A(x), B(x)] for all x ∈  X 

 

Example 1 : Union of Fuzzy A and B     

A(x) = 0.6  and B(x) = 0.4 ∴ (A ∪ B)(x) = max [0.6, 0.4]  = 0.6 

Example 2 : Union of SMALL and MEDIUM     

The fuzzy set A SMALL         

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1},  {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

The fuzzy set B MEDIUM        

MEDIUM = FuzzySet {{1, 0 },  {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

 {7, 1},   {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1},  {12, 0}} 

The fuzzy operation :  Union       

FUZZYUNION = [SMALL 

∪ MEDIUM]       

 

SetSmallUNIONMedium = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5}, 

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}} , UniversalSpace →  

{1, 12, 1}] 

The notion of the union is closely related to that of the connective "or". 

 

Let A is a class of "Young" men, B is a class of "Bald" men. 
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If "David is Young" or "David is Bald," then David is associated with the 

union of A and B. Implies David is a member of A ∪ B. 

 

• Properties Related to Union 
 

The properties related to union are : 

 

Identity, Idempotence, Commutativity and Associativity. 

 

■ Identity:
 

 

A ∪  

Φ 

 

 

= A 

 

input 
 

= Equality [SMALL ∪ 

 

EMPTY , SMALL] 

 

output = True 

 

A 

∪ 

 

 

X = X 

 

input 
 

= Equality [SMALL ∪ 

 

UnivrsalSpace , UnivrsalSpace] 

 

output = True 

 

■ Idempotence : 

A ∪ A = A
 

 

input = Equality [SMALL ∪  SMALL , SMALL] 

 

output = True 

■ Commutativity :
 

 

A ∪  B = B ∪  A 
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input = Equality [SMALL ∪  MEDIUM, MEDIUM ∪  SMALL] 

 

output = True 

■ Associativity:
 

 

A 

∪ 

 

 

(B

∪ 

 

 

C) = 

(A∪ 

 

 

B) 

∪ 

 

 

C 

 

 

input = Equality [SMALL 

∪ 

 
 

(MEDIUM 

∪ 

 
 

BIG) , (SMALL 

∪ 

 
 

MEDIUM) 

 
 

∪ 

 
 

BIG] 

 

output = True 

 

SMALL = FuzzySet {{1, 1 }, 
{7, 0.2}, 

 

 

{2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {8, 

0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}} 

 

 

MEDIUM = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

{7, 1}, {8, 1}, {9, 0 }, {10, 0 }, {11, 0.1}, {12, 0}} 

 

BIG 

 

 

= FuzzySet [{{1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0.1}, {7,0.2}, 

{8,0.4}, {9,0.6}, {10,0.8}, {11,1}, {12,1}}] 

 

 

Medium ∪ BIG = FuzzySet [{1,0},{2,0}, {3,0}, {4,0.2}, {5,0.5}, {6,0.8}, 
{7,1}, {8, 1}, {9, 0.6}, {10, 0.8}, {11, 1}, {12, 1}] 

 

Small ∪ Medium = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5}, 
{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}] 
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SC – Fuzzy Computing 

• Intersection 
 

Let A and B be fuzzy sets defined in the space X. 

 

The intersection is defined as the greatest fuzzy set included both A and 

B. The intersection of A and B is denoted by A ∩ B. 

 

The following relation must be satisfied for the union operation : 

 

for all x in the set X, (A ∩  B)(x) = Min (A(x), B(x)). 

 

Fuzzy Intersection :  (A ∩  B)(x) = min [A(x), B(x)] 

 

 

 

 

for all x 

 

 

 

 

∈ 

 

 

 

 

X 

 

 

Example 1 : Intersection of Fuzzy A and B 

A(x) = 0.6  and B(x) = 0.4 ∴ (A ∩  B)(x) = min [0.6, 0.4]  = 0.4 

Example 2 : Union of SMALL and MEDIUM  

The fuzzy set A  SMALL    

SMALL = FuzzySet {{1, 1  },  {2, 1 }, {3, 0.9}, {4, 0.6},  {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 },  {11, 0},  {12, 0}} 

The fuzzy set B  MEDIUM    

MEDIUM = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0.2},  {5, 0.5}, {6, 0.8}, 

 {7, 1},   {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1},  {12, 0}} 

 

The fuzzy operation : Intersection FUZZYINTERSECTION = min 

[SMALL ∩ MEDIUM] SetSmallINTERSECTIONMedium = FuzzySet 

[{{1,0},{2,0}, {3,0}, {4,0.2}, 

 

{5,0.4}, {6,0.3}, {7,0.2}, {8, 0.1}, {9, 0},{10, 0}, {11, 0}, {12, 0}} , UniversalSpace →

 {1, 12, 1}] 
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 Neural Computing 

 

Neural Computers mimic certain processing capabilities of the human brain. 

 

- Neural Computing is an information processing paradigm, inspired by 

biological system, composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. 

 

- A neural net is an artificial representation of the human brain that tries to 

simulate its learning process. The term "artificial" means that neural nets 

are implemented in computer programs that are able to handle the large 

number of necessary calculations during the learning process. 

 

- Artificial Neural Networks (ANNs), like people, learn by example. 

 

- An ANN is configured for a specific application, such as pattern recognition 

or data classification, through a learning process. 

 

- Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true for ANNs as well. 
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Biological Model: 

 

The human brain consists of a large number (more than a billion) of neural 

cells that process information. Each cell works like a simple processor. The 

massive interaction between all cells and their parallel processing, makes 

the brain's abilities possible. The 

structure of neuron is shown below. 

 

 

Dendrites are the branching fibers 

extending from the cell body or soma. 

Soma or cell body of a neuron contains 

the nucleus and other structures, 

support chemical processing and 

production of neurotransmitters. 

 

Axon is a singular fiber carries information 

away from the soma to the synaptic sites 

of other neurons (dendrites and somas), 

muscles, or glands. 

 

Axon hillock is the site of summation 

for incoming information. At any 

moment, the collective influence of all 

neurons, that conduct as impulses to a 

given neuron, will determine whether or 

not an action potential will be initiated at 

 

the axon hillock and propagated along the axon. 

 

Myelin Sheath consists of fat-containing cells that insulate the axon from electrical 

activity. This insulation acts to increase the rate of transmission of signals. A gap 

exists between each myelin sheath cell along the axon. Since fat inhibits the 

propagation of electricity, the signals jump from one gap to the next. 

 

 

Fig. Structure of Neuron 
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Nodes of Ranvier are the gaps (about 1 m) between myelin sheath cells long 

axons. Since fat serves as a good insulator, the myelin sheaths speed the rate of 

transmission of an electrical impulse along the axon. 

 

Synapse is the point of connection between two neurons or a neuron and a muscle or 

a gland. Electrochemical communication between neurons takes place at these 

junctions. 

 

Terminal Buttons of a neuron are the small knobs at the end of an axon that 

release chemicals called neurotransmitters. 
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• Information flow in a Neural Cell 
 

The input /output and the propagation of information are shown below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Structure of a neural cell in the human brain 

 

■ Dendrites receive activation from other neurons. 
 

■ Soma processes the incoming activations and converts them into 

output activations. 
 

■ Axons act as transmission lines to send activation to other neurons. 
 

■ Synapses the junctions allow signal transmission between the axons 

and dendrites. 
 

■ The process of transmission is by diffusion of chemicals called neuro-

transmitters. 

 

McCulloch-Pitts introduced a simplified model of this real neurons. 
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Artificial Neuron 

 

• The McCulloch-Pitts Neuron 
 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 

 

 

■ A set of synapses (ie connections) brings in activations from other 

neurons. 

 

■ A processing unit sums the inputs, and then applies a non-linear 

activation function (i.e. transfer / threshold function). 

 

■ An output line transmits the result to other neurons. 
 

In other words, the input to a neuron arrives in the form of signals. 

The  signals  build up  in  the  cell.  Finally  the cell fires (discharges) 

through the output. The cell can start building up signals again. 
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• Functions : 
 

The function y = f(x) describes a relationship, an input-output mapping, 

from x to y. 

 

■ Threshold or Sign function sgn(x) : defined as 
 

 
 

 

 

■ Threshold or Sign function sigmoid (x) : defined as a smoothed 

(differentiable) form of the threshold function 
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• McCulloch-Pitts (M-P) Neuron Equation 
 

Fig  below is the  same   previously  shown  simplified  model  of  a  real 
 

neuron, as a threshold Logic Unit.  
 

 

 

Note : The McCulloch-Pitts neuron is an extremely simplified model of real 

biological neurons. Some of its missing features include: non-binary input 

and output, non-linear summation, smooth thresholding, stochastic (non-

deterministic), and temporal information processing. 

 

 

34 
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• Basic Elements of an Artificial Neuron 
 

It consists of three basic components - weights, thresholds, and a single 

activation function. 

 

 

 

Weighting Factors 

 

The values W1 , W2 , . . . Wn are weights to determine the strength of input 

row vector X = [x1 , x2 , . . . , xn]
T
. Each input is multiplied by the 

associated weight of the neuron connection XT W. The +ve weight excites 

and the -ve weight inhibits the node output. 

 

Threshold 

 

The node’s internal threshold Φ is the magnitude offset. It affects the 

activation of the node output y as: 

y = Σn  Xi Wi  - Φ k 

i=1 
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Activation Function 

 

An activation function performs a mathematical operation on the signal 

output. The most common activation functions are, Linear 

 

Function, Threshold Function, Piecewise Linear Function, Sigmoidal (S 

shaped) function, Tangent hyperbolic function and are chose depending 

upon the type of problem to be solved by the network. 
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• Example : 
 

With a binary activation function, the outputs of the neuron is: 

 

y (threshold) = 1 
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• Single and Multi - Layer Perceptrons 
 

A perceptron is a name for simulated neuron in the computer program. 

The usually way to represent a neuron model is described below. 

 

The neurons are shown as circles in the diagram. It has several inputs and 

a single output. The neurons have gone under various names. 

 

- Each individual cell is called either a node or a perceptron. 
 

- A neural network consisting of a layer of nodes or perceptrons between 
 

the input and the output is called a single layer perceptron. 

 

- A network consisting of several layers of single layer perceptron 

stacked on top of other, between input and output , is called a 
 

multi-layer perceptron 

Output 

 

- 

 
 

  
 

Output Output  
 

 

 

 

 

 

 

 

 

 

Input InputInput 

Fig Single and Multi - Layer Perceptrons 

 

Multi-layer perceptrons are more powerful than single-layer perceptrons. 
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• Perceptron 
 

Any number of McCulloch-Pitts neurons can be connected together in any 

way. 

 

Definition : An arrangement of one input layer of McCulloch-Pitts neurons, 

that is feeding forward to one output layer of McCulloch-Pitts neurons is 

known as a Perceptron. 

 

 

 

A Perceptron is a powerful computational device. 
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Genetic Algorithms 

Genetic Algorithms (GAs) were invented by John Holland in early 1970's to mimic 

some of the processes observed in natural evolution. 

 

Later in 1992 John Koza used GAs to evolve programs to perform certain tasks. 

He called his method "Genetic Programming" (GP). 

 

GAs simulate natural evolution, a combination of selection, recombination and 

mutation to evolve a solution to a problem. 

GAs simulate the survival of the fittest, among individuals over consecutive 

generation for solving a problem. Each generation consists of a population of 

character strings that are analogous to the chromosome in our DNA 

(Deoxyribonucleic acid). DNA contains the genetic instructions used in the 

development and functioning of all known living organisms. 

 
What are Genetic Algorithms 

 

■ Genetic Algorithms (GAs) are adaptive heuristic search algorithm 

based on the evolutionary ideas of natural selection and genetics. 

 

■ Genetic algorithms (GAs) are a part of evolutionary computing, a 

rapidly growing area of artificial intelligence. GAs are inspired by 

Darwin's theory about evolution - "survival of the fittest". 

■ GAs represent an intelligent exploitation of a random search used to 

solve optimization problems. 

■ GAs, although randomized, exploit historical information to direct the 

search into the region of better performance within the search space. 

■ In nature, competition among individuals for scanty resources results 

in the fittest individuals dominating over the weaker ones. 
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• Why Genetic Algorithms 
 

"Genetic Algorithms are good at taking large, potentially huge search 

spaces and navigating them, looking for optimal combinations of things, 

solutions you might not otherwise find in a lifetime.” - Salvatore Mangano 

Computer Design, May 1995. 

 

- GA is better than conventional AI, in that it is more robust. 

 

- Unlike  older  AI  systems,  GAs  do  not  break  easily  even  if  the 
 

inputs changed slightly, or in the presence of reasonable noise. 

 

- In searching a large state-space, multi-modal state-space, or n-

dimensional surface, a GA may offer significant benefits over more 

typical search of optimization techniques, like - linear programming, 

heuristic, depth-first, breath-first. 

 

• Mechanics of Biological Evolution 
 

Genetic Algorithms are a way of solving problems by mimicking processes 

the nature uses - Selection, Crosses over, Mutation and Accepting to 

evolve a solution to a problem. 

 

■ Every organism has a set of rules, describing how that organism is 

built, and encoded in the genes of an organism. 

 

■ The genes are connected together into long strings called 

chromosomes. 
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■ Each gene represents a specific trait (feature) of the organism and has 

several different settings, e.g. setting for a hair color gene may be 

black or brown. 

 

■ The genes and their settings are referred as an organism's genotype. 

 

■ When two organisms mate they share their genes. The resultant 

offspring may end up having half the genes from one parent and half 

from the other parent. This process is called crossover 

(recombination). 

 

■ The newly created offspring can then be mutated. A gene may be 

mutated and expressed in the organism as a completely new trait. 

Mutation means, that the elements of DNA are a bit changed. This 

change is mainly caused by errors in copying genes from parents. 

 

■ The fitness of an organism is measured by success of the organism in 

its life. 
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 Artificial Evolution and Search Optimization 

 

The problem of finding solutions to problems is itself a problem with no 

general solution. Solving problems usually mean looking for solutions, 

which will be the best among others. 

 

■ In engineering and mathematics finding the solution to a problem is 

often thought as a process of optimization. 

 

■ Here the process is :  first formulate the problems as mathematical 
 

models expressed in terms of functions; then to find a solution, 

discover the parameters that optimize the model or the function 

components that provide optimal system performance. 

 

The well-established search / optimization techniques are usually classified 

in to three broad categories : Enumerative, Calculus-based, and Guided 

random search techniques. A taxonomy of Evolution & Search 

Optimization classes is illustrated in the next slide. 
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• Taxonomy of Evolution & Search Optimization Classes 

  

 

■ Enumerative Methods 

 

These are the traditional search and control strategies. They search for 

a solution in a problem space within the domain of artificial 

intelligence. There are many control structures for search. The depth-

first search and breadth-first search are the two most 

 

common  search strategies.   Here  the search goes through  every 

point related to the function's domain space (finite or discretized), 

one  point  at  a  time.  They  are  very  simple to implement but 

usually require significant   computation.  These   techniques  are 

not suitable for applications with large domain spaces.  

In the field of AI, enumerative  methods   are subdivide into two 
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categories : uninformed and informed methods. 

 

◊ Uninformed or blind methods :  Such as mini-max algorithm 
 

searches all points in the space in a predefined order; this is 

used in game playing; 

 

◊ Informed methods : Such as Alpha-Beta and A*, does more 

sophisticated search using domain specific knowledge in the form 

of a cost function or heuristic in order to reduce the cost of the 

search. 
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■ Calculus based techniques 

 

Here a set of necessary and sufficient conditions to be satisfied by the 

solutions of an optimization problem. They subdivide into direct and 

indirect methods. 

 

◊ Direct or Numerical methods,   such as Newton or Fibonacci, 
 

seek extremes by "hopping" around the search space and 

assessing the gradient of the new point, which guides 

 

the search. This is simply the notion of "hill climbing", which 

finds the best local point by climbing the steepest permissible 

gradient. These techniques can be used only on a restricted set 

of "well behaved" functions. 

 

◊ Indirect methods search for local extremes by solving the usually 

non-linear set of equations resulting from setting the 
 

gradient of the objective function to zero. The search for 

possible solutions (function peaks) starts by restricting itself to 

points with zero slope in all directions. 
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■ Guided Random Search techniques 

 

These are based on enumerative techniques but they use additional 

information to guide the search. Two major subclasses 

 

are simulated annealing and evolutionary algorithms. Both are 

evolutionary processes. 

 

◊ Simulated annealing uses a thermodynamic evolution process to 

search minimum energy states. 

 

◊ Evolutionary algorithms (EAs) use natural selection principles. 

This form of search evolves throughout generations, improving the 

features of potential solutions by means of biological inspired 

operations. Genetic Algorithms (GAs) are a good example of this 

technique. 

 

Our main concern is, how does an Evolutionary algorithm : 

 

- implement and carry out search, 
 

- describes the process of search, 
 

- what are the elements required to carry out search, and 
 

- what are the different search strategies. 
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 Evolutionary Algorithms (EAs)      

Evolutionary algorithms are search methods.  They take  inspirations 

from  natural  selection  and  survival  of  the  fittest  in the biological 

world, and therefore differ  from traditional search optimization 

techniques. EAs  involve  search  from  a  "population" of solutions, 

and not from  a  single point.  Each  iteration of an EA involves 

a competitive selection that weeds out poor solutions. The solutions 

with high "fitness" are "recombined"  with other solutions  by 

 

swapping parts of a solution with another. Solutions are also "mutated" by 

making a small change to a single element of the 

 

solution. Recombination   and mutation   are used to generate 

new  solutions  that  are  biased  towards  regions of the space  for 

which good solutions have already been seen.     

Evolutionary search algorithm (issues related to search) :  

In  the search  space,  each point  represent one feasible solution. 

 

Each feasible solution is marked by its value or fitness for the problem. 

 

The issues related to search are : 

 

- Search for a solution point, means finding which one point (or more) 

among many feasible solution points in the search space is the solution. 

This requires looking for some extremes, minimum or maximum. 

 

- Search space can be whole known, but usually we know only a few 

points and we are generating other points as the process of finding 

solution continues. 
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- Search can be very complicated. One does not know where to look 
 

for the solution and where to start. 

 

- What we find is some suitable solution, not necessarily the best solution. 

The solution found is often considered as a good solution, because it is not 

often possible to prove what is the real optimum solution. 

 Associative Memory 

 

An associative memory is a content-addressable structure that maps a set of 

input patterns to a set of output patterns. The associative memory are of two 

types : auto-associative and hetero-associative. 

 

� An auto-associative memory retrieves a previously stored pattern that most 

closely resembles the current pattern. 

 

� In a hetero-associative memory, the retrieved pattern is, in general, different 

from the input pattern not only in content but possibly also in type and 

format. 

 

• Example : Associative Memory 
 

The figure below shows a memory containing names of several people. 

If the given memory is content-addressable, 

 

Then using the erroneous string "Crhistpher Columbos" as key is 

sufficient to retrieve the correct name "Christopher Colombus." 

 

In this sense, this type of memory is robust and fault-tolerant, because 

this type of memory exhibits some form of error-correction capability. 
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Description of Associative Memory 

 

An associative memory is a content-addressable structure that maps 

specific input representations to specific output representations. 

 

■ A content-addressable memory is a type of memory that allows, the 

recall of data based on the degree of similarity between the input 

pattern and the patterns stored in memory.
 

 

■ It refers to a memory organization in which the memory is accessed by 

its content and not or opposed to an explicit address in the traditional 

computer memory system.
 

 

■
 This type of memory allows the recall of information based on partial 

knowledge of its contents. 
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■ It  is  a  system  that  “associates”  two  patterns  (X,  Y)  such  that 
 

when one is encountered, the other can be recalled. 

 

- Let X and Y be two vectors of length m and n respectively. 

 

- Typically, XÎ {-1, +1}m, Y Î {-1, +1}n 

 

- The  components  of  the  vectors  can  be  thought  of  as  pixels 
 

when the two patterns are considered as bitmap images. 

 

■ There are two classes of associative memory: 
 

- auto-associative and 

 

- hetero-associative. 

 

An auto-associative memory is used to retrieve a previously stored 

pattern that most closely resembles the current pattern. 

 

In a hetero-associative memory, the retrieved pattern is, in general, 

different from the input pattern not only in content but possibly also 

different in type and format. 

■ Artificial neural networks can be used as associative memories. 
 

The simplest artificial neural   associative memory is the 

linear associater. The other  popular ANN models used as 

associative  memories  are  Hopfield  model and Bidirectional 

Associative Memory (BAM) models.      
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Adaptive Resonance Theory (ART) 

 

ART stands for "Adaptive Resonance Theory", invented by Stephen Grossberg 

in 1976. ART encompasses a wide variety of neural networks, based explicitly 

on neurophysiology. The word "Resonance" is a concept, just a matter of being 

within a certain threshold of a second similarity measure. 

 

The basic ART system is an unsupervised learning model, similar to many 

iterative clustering algorithm where each case is processed by finding the 

"nearest" cluster seed that resonate with the case and update the cluster seed 

to be "closer" to the case. If no seed resonate with the case then a new cluster 

is created. 

 

Note : The terms nearest and closer are defined in many ways in clustering 

algorithm. In ART, these two terms are defined in slightly different way by 

introducing the concept of "resonance". 
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• Definitions of ART and other types of Learning 
 

ART is a neural network topology whose dynamics are based on Adaptive 

Resonance Theory (ART). Grossberg developed ART as a theory of human 

cognitive information processing. The emphasis of ART neural networks 

lies at unsupervised learning and self-organization to mimic biological 

behavior. Self-organization means that the system must be able to build 

stable recognition categories in real-time. 

 

The unsupervised learning means that the network learns the significant 

patterns on the basis of the inputs only. There is no feedback. There is no 

external teacher that instructs the network or tells to which category a 

certain input belongs. Learning in biological systems always starts as 

unsupervised learning; Example : For the newly born, hardly any pre-

existing categories exist. 

 

The other two types of learning are reinforcement learning 

and  supervised  learning.  In  reinforcement  learning the net receives 

only limited feedback, like "on this  input you performed  well"  or 

"on this input you have made an error".  In supervised mode of learning 

a net receives for each input the correct response.   

Note: A  system that can learn in unsupervised mode can always 

be adjusted to  learn  in  the  other  modes,  like  reinforcement  mode 

or supervised mode. But a system specifically  designed to learn 

in supervised mode can never perform in unsupervised mode.  
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• Description of Adaptive Resonance Theory 
 

The basic ART system is an unsupervised learning model. 

 

The model typically consists of : 

− a comparison field and a recognition field composed of neurons, 

− a vigilance parameter,   and 

 

− a reset module. 

 

The functions of each of these constituents are explained below. 

■ Comparison field and Recognition field 
 

- The Comparison field takes an input vector (a 1-D array of values) 

and transfers it to its best match in the Recognition field; the 
 

best match is, the single neuron whose set of weights (weight 

vector) matches most closely the input vector. 

 

- Each Recognition Field neuron outputs a negative signal 

(proportional to that neuron’s quality of match to the input vector) 

to each of the other Recognition field neurons and inhibits their 

output accordingly. 
 

- Recognition field thus exhibits lateral inhibition, allowing each 

neuron in it to represent a category to which input vectors are 

classified. 

 

■ Vigilance parameter 
 

It has considerable influence on the system memories: 

 

- higher vigilance produces highly detailed memories, 

 

- lower vigilance results in more general memories 
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■ Reset module 
 

After the input vector is classified, the Reset module compares the 

strength of the recognition match with the vigilance parameter. 

 

- If the vigilance threshold is met, Then training commences. 
 

- Else, the firing recognition neuron is inhibited until a new input 

vector is applied; 
 

• Training ART-based Neural Networks 
 

Training commences only upon completion of a search procedure. 

What happens in this search procedure : 

 

- The Recognition neurons are disabled one by one by the reset function 

until the vigilance parameter is satisfied by a recognition match. 
 

- If no committed recognition neuron’s match meets the vigilance 

threshold, then an uncommitted neuron is committed and adjusted 

towards matching the input vector. 

 

Methods of training ART-based Neural Networks: 

There are two basic methods, the slow and fast learning. 

 

- Slow learning method : here the degree of training of the recognition 

neuron’s weights towards the input vector is calculated using 

differential equations and is thus dependent on the length of time the 

input vector is presented. 
 

- Fast learning method : here the algebraic equations are used to calculate 

degree of weight adjustments to be made, and binary values are used. 
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Note : While fast learning is effective and efficient for a variety of tasks, 

the slow learning method is more biologically plausible and can be used 

with continuous-time networks (i.e. when the input vector can vary 

continuously). 

• Types of ART Systems : 
 

The ART Systems have many variations : 

ART 1, ART 2, Fuzzy ART, ARTMAP 

 

■ ART 1: The simplest variety of ART networks, accept only binary inputs. 
 

 

■ ART 2 : It extends network capabilities to support continuous inputs. 
 

 

■ Fuzzy ART : It Implements fuzzy logic into ART’s pattern recognition, thus 

enhances generalizing ability. One very useful feature of fuzzy ART is 

complement coding, a means of incorporating the absence of features into 

pattern classifications, which goes a long way towards preventing 

inefficient and unnecessary category proliferation. 

 

■ ARTMAP :   Also  known  as  Predictive  ART,  combines   two  slightly 
 

modified ARTs , may be two ART-1 or two ART-2 units into a 

supervised learning structure where the first unit takes the input data 

and the second unit takes the correct output data, then used to make 

the minimum possible adjustment of the vigilance parameter in the 

first unit in order to make the correct classification. 
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 Applications of Soft Computing 

 

The applications of Soft Computing have proved two main advantages. 

 

- First, in solving nonlinear problems, where mathematical models are not 

available, or not possible. 
 

- Second, introducing the human knowledge such as cognition, recognition, 

understanding, learning, and others into the fields of computing. 

 

This resulted in the possibility of constructing intelligent systems such as 

autonomous self-tuning systems, and automated designed systems. 

 

The relevance of soft computing for pattern recognition and image processing 

is already established during the last few years. The subject has recently 

gained importance because of its potential applications in problems like : 

- Remotely Sensed Data Analysis, 
 

- Data Mining, Web Mining, 
 

- Global Positioning Systems, 
 

- Medical Imaging, 
 

- Forensic Applications, 
 

- Optical Character Recognition, 
 

- Signature Verification, 
 

- Multimedia, 
 

- Target Recognition, 
 

- Face Recognition  and 
 

- Man Machine Communication. 
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Fundamentals of Neural Networks 

 

What is Neural Net ? 

 

• A neural net is an artificial representation of the human brain that tries to 

simulate its learning process. An artificial neural network (ANN) is often 

called a "Neural Network" or simply Neural Net (NN). 

 

• Traditionally, the word neural network is referred to a network of biological 

neurons in the nervous system that process and transmit information. 

 

 

• Artificial neural network is an interconnected group of artificial neurons 

that uses a mathematical model or computational model for information 

processing based on a connectionist approach to computation. 

 

• The artificial neural networks are made of interconnecting artificial 

neurons which may share some properties of biological neural networks. 

 

• Artificial Neural network is a network of simple processing elements 

(neurons) which can exhibit complex global behavior, determined by the 

connections between the processing elements and element parameters. 
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Introduction 

 

Neural Computers mimic certain processing capabilities of the human brain. 

 

- Neural Computing is an information processing paradigm, inspired by 

biological system, composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. 

 

- Artificial Neural Networks (ANNs), like people, learn by example. 

 

- An ANN is configured for a specific application, such as pattern recognition 

or data classification, through a learning process. 

 

- Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true of ANNs as well. 
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 Why Neural Network 

 

Neural Networks follow a different paradigm for computing. 

 

■ The conventional computers are good for - fast arithmetic and does 

what programmer programs, ask them to do. 

 

■ The conventional computers are not so good for - interacting with 

noisy data or data from the environment, massive parallelism, fault 

tolerance, and adapting to circumstances. 

 

■ The neural network systems help where we can not formulate an 

algorithmic solution or where we can get lots of examples of the 

behavior we require. 

 

■ Neural Networks follow different paradigm for computing. 

 

The von Neumann machines are based on the processing/memory 

abstraction of human information processing. 

 

The neural networks are based on the parallel architecture of biological 

brains. 

 

■ Neural networks are a form of multiprocessor computer system, with 
 

- simple processing elements , 
 

- a high degree of interconnection, 
 

- simple scalar messages, and 
 

- adaptive interaction between elements. 
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Research History 

 

The history is relevant because for nearly two decades the future of Neural 

network remained uncertain. 

 

McCulloch and Pitts (1943) are generally recognized as the designers of the 

first neural network. They combined many simple processing units together 

that could lead to an overall increase in computational power. They suggested 

many ideas like : a neuron has a threshold level and once that level is 

reached the neuron fires. It is still the fundamental way in which ANNs 

operate. The McCulloch and Pitts's network had a fixed set of weights. 

 

Hebb (1949) developed the first learning rule, 

active at the same time then the strength 

increased. 

 

 

that is if two neurons are 

between them should be 

 

In the 1950 and 60's, many researchers (Block, Minsky, Papert, and 

Rosenblatt worked on perceptron. The neural network model could be proved 

to converge to the correct weights, that will solve the problem. The weight 

adjustment (learning algorithm) used in the perceptron was found more 

powerful than the learning rules used by Hebb. The perceptron caused great 

excitement. It was thought to produce programs that could think. 

 

Minsky & Papert (1969) showed that perceptron could not learn those 

functions which are not linearly separable. 

 

The neural networks research declined throughout the 1970 and until mid 

80's because the perceptron could not learn certain important functions. 
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Neural network regained importance in 1985-86. The researchers, Parker 

and LeCun discovered a learning algorithm for multi-layer networks called 

back propagation that could solve problems that were not linearly 

separable. 
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 Biological Neuron Model 

 

The human brain consists of a large number, more than a billion of neural 

cells that process information. Each cell works like a simple processor. The 

massive interaction between all cells and their parallel processing only 

makes the brain's abilities possible. 

 

Dendrites are branching fibers that 

extend from the cell body or soma. 

Soma or cell body of a neuron contains 

the nucleus and other structures, 

support chemical processing and 

production of neurotransmitters. 

 

Axon is a singular fiber carries information 

away from the soma to the synaptic sites 

of other neurons (dendrites and somas), 

muscles, or glands. 

 

Axon hillock is the site of summation for 

incoming information. At any moment, the 

collective influence of all neurons that 

conduct impulses to a given neuron will 

determine whether or not an 

Fig. Structure of Neuron 

action potential will be initiated at the 

 

axon hillock and propagated along the axon. 

 

Myelin Sheath consists of fat-containing cells that insulate the axon from electrical 

activity. This insulation acts to increase the rate of transmission of signals. A gap 

exists between each myelin sheath cell along the axon. Since fat inhibits the 

propagation of electricity, the signals jump from one gap to the next. 
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Nodes of Ranvier are the gaps (about 1 m) between myelin sheath cells long 

axons are Since fat serves as a good insulator, the myelin sheaths speed the rate of 

transmission of an electrical impulse along the axon. 

 

Synapse is the point of connection between two neurons or a neuron and a muscle or 

a gland. Electrochemical communication between neurons takes place at these 

junctions. 

 

Terminal Buttons of a neuron are the small knobs at the end of an axon that 

release chemicals called neurotransmitters. 

 

• Information flow in a Neural Cell 
 

The input /output and the propagation of information are shown below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Structure of a neural cell in the human brain 

 

■ Dendrites receive activation from other neurons. 
 

■ Soma processes the incoming activations and converts them into 

output activations. 
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■ Axons act as transmission lines to send activation to other neurons. 
 

■ Synapses the junctions allow signal transmission between the axons 

and dendrites. 
 

■ The process of transmission is by diffusion of chemicals called neuro-

transmitters. 

 

McCulloch-Pitts introduced a simplified model of this real neurons. 
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SC - Neural Network – Introduction 

1.4 Artificial Neuron Model 

 

An artificial neuron is a mathematical function conceived as a simple 

model of a real (biological) neuron. 

 

• The McCulloch-Pitts Neuron 
 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 

 

 

■ A set of input connections brings in activations from other neurons.
 

 

■ A processing unit sums the inputs, and then applies a non-linear 
activation function (i.e. squashing / transfer / threshold function).

 
 

■ An output line transmits the result to other neurons.
 

 

In other words , 

 

- The input to a neuron arrives in the form of signals. 
 

- The signals build up in the cell. 
 

- Finally the cell discharges (cell fires) through the output . 

 

- The cell can start building up signals again. 
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 Single Layer Feed-forward Network 

The Single Layer Feed-forward Network consists of a single layer of 

weights , where the inputs are directly connected to the outputs, via a 

series of weights. The synaptic links carrying weights connect every input 

to every output , but not other way. This way it is considered a network of 

feed-forward type. The sum of the products of the weights and the inputs is 

calculated in each neuron node, and if the value is above some threshold 

(typically 0) the neuron fires and takes the activated value (typically 1); 

otherwise it takes the deactivated value (typically -1). 

 

input xi 

weights wij 

output yj 
 

  
 

x1 
w11 

y1  

w21 

 

  
 

 w12  
 

x2 

w22 

y2 

 

 
 

 w2m  
 

 

wn1 

w1m 
 

  
 

 wn2  
 

xn 

wnm 

ym 
 

  
 

 

 

Single layer 

Neurons 

 

Fig. Single Layer Feed-forward Network 
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Multi Layer Feed-forward Network 

 

The name suggests, it consists of multiple layers. The architecture of this 

class of network, besides having the input and the output layers, also have 

one or more intermediary layers called hidden layers. The computational 

units of the hidden layer are known as hidden neurons. 

 
 

 

Fig. 

Multilayer feed-forward network in (ℓ – m – n) configuration. 

 

■  The hidden layer does intermediate computation before directing the 

input to output layer. 
 

■  The input layer neurons are linked to the hidden layer neurons; the 

weights on these links are referred to as input-hidden layer weights. 
 

■  The hidden layer neurons and the corresponding weights are referred to 

as output-hidden layer weights. 
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■  A multi-layer feed-forward network with ℓ input neurons, m1 neurons in 

the first hidden layers, m2 neurons in the second hidden layers, and n 

output neurons in the output layers is written as (ℓ - m1 - m2 – n ). 
 

The Fig. above illustrates a multilayer feed-forward network with a 

configuration (ℓ - m – n). 

 

 Recurrent Networks 

 

The Recurrent Networks differ from feed-forward architecture. A Recurrent 

network has at least one feed back loop. 

 

Example : 

 

 

There could be neurons with self-feedback links; that is the output of a 

neuron is fed back into it self as input. 
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 Learning Methods in Neural Networks 

 

The learning methods in neural networks are classified into three basic types : 

 

• Supervised Learning, 
• Reinforced Learning 

 

These three types are classified based on : 

 

• presence or absence of teacher and 
 

• the information provided for the system to learn. 

 

These are further categorized, based on the rules used, as 

 

• Hebbian, 
 

• Gradient descent, 
 

• Competitive and 
 

• Stochastic learning. 
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• Classification of Learning Algorithms 
 

Fig. below indicate the hierarchical representation of the algorithms 

mentioned in the previous slide. These algorithms are explained in 

subsequent slides. 

 

 

 

Neural Network 

Learning algorithms 
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b Supervised Learning 
 

 A teacher is present during learning process and presents expected 

output. 
 

 Every input pattern is used to train the network. 
 

 Learning process is based on comparison, between network's computed 

output and the correct expected output, generating "error". 
 

 The "error" generated is used to change network parameters that result 

improved performance. 

 

c Unsupervised Learning 
 

 No teacher is present. 
 

 The expected or desired output is not presented to the network. 
 

 The system learns of it own by discovering and adapting to the 

structural features in the input patterns. 

 

d Reinforced learning 
 

 A teacher is present but does not present the expected or desired 

output but only indicated if the computed output is correct or incorrect. 
 

 The information provided helps the network in its learning process. 
 

 A reward is given for correct answer computed and a penalty for a 

wrong answer. 

 

Note : The Supervised and Unsupervised learning methods are most popular 

forms of learning compared to Reinforced learning. 
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• Hebbian Learning 
 

Hebb proposed a rule based on correlative weight adjustment. 

 

In this rule, the input-output pattern pairs (Xi , Yi) are associated by the 

weight matrix W, known as correlation matrix computed as 

 

W =  Σn
 Xi Yi

T
 

i=1 

 

where Yi
T  is the transpose of the associated output vector Yi 

 

There are many variations of this rule proposed by the other researchers 

(Kosko, Anderson, Lippman) . 
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• Gradient descent Learning 
 

This is based on the minimization of errors E defined in terms of weights 

and the activation function of the network. 

 

- Here, the activation function 

differentiable, because the 

 

 

of the 

updates 

 

 

network is of 

weight 

 

 

required to 

is dependent 

 

 

be 

on 

 

the gradient of the error E. 

 

• If  ∆  Wij  is the weight update of the link connecting the i th and the j th 
 

neuron of the two neighboring layers, then ∆ Wij  is defined as 

 

∆ 

 

 

Wij 

 

 

= 

η 

 

 

(

∂ 

 

 

E / 

∂ 

 

 

Wij ) 

 

 

where 

η 

 
 

is the learning rate parameters and 

(∂ 

 
 

E / 

∂ 

 
 

Wij ) 

 
 

is error 

 

gradient 
 

with reference to the weight Wij . 

 

 

Note  :  The  Hoffs  Delta  rule  and  Back-propagation 

 

 

learning 

 

 

rule 

 

 

are 

 

the examples of Gradient descent learning. 
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• Competitive Learning 
 

 In this method, those neurons which respond strongly to the input 

stimuli have their weights updated. 
 

 When an input pattern is presented, all neurons in the layer compete, 

and the winning neuron undergoes weight adjustment . 
 

 This strategy is called "winner-takes-all". 
 

• Stochastic Learning 
 

 In this method the weights are adjusted in a probabilistic fashion. 
 

- Example : Simulated annealing which is a learning mechanism 

employed by Boltzmann and Cauchy machines. 
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• Taxonomy Of Neural Network Systems 
 

In the previous sections, the Neural Network Architectures and the Learning 

methods have been discussed. Here the popular neural network 

 

systems are listed. The grouping of these systems in terms of architectures and 

the learning methods are presented in the next slide. 

 

• Neural Network Systems 
 

–   ADALINE (Adaptive Linear Neural Element) 

 

–   ART (Adaptive Resonance Theory) 

 

–   AM (Associative Memory) 

 

–   BAM (Bidirectional Associative Memory) 

 

–   Boltzmann machines 

 

–   BSB ( Brain-State-in-a-Box) 

 

–   Cauchy machines 

 

–   Hopfield Network 

 

–   LVQ (Learning Vector Quantization) 

 

–   Neoconition 
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–   Perceptron 

 

–   RBF ( Radial Basis Function) 

 

–   RNN (Recurrent Neural Network) 

 

–   SOFM (Self-organizing Feature Map) 

 

30 
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• Classification of Neural Network 
 

A taxonomy of neural network systems based on Architectural types and 

the Learning methods is illustrated below. 

 

   Learning Methods  

      

  Gradient Hebbian Competitive Stochastic 

  descent    

      

 Single-layer ADALINE, AM, LVQ, - 

 feed-forward Hopfield, Hopfield, SOFM  

  Percepton,    

      

 Multi-layer CCM, Neocognition   

 feed- forward MLFF,    

  RBF    

      

 Recurrent RNN BAM, ART Boltzmann and 

 Networks  BSB,  Cauchy 

   Hopfield,  machines 

      

 

 

Table : Classification of Neural Network Systems with respect to 

 

learning methods and Architecture types 
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■  Single-Layer NN Systems 
 

Here, a simple Perceptron Model and an ADALINE Network Model is presented. 

 

6.1 Single layer Perceptron 

 

Definition : An arrangement of one input layer of neurons feed forward to 

one output layer of neurons is known as Single Layer Perceptron. 

 

input xi   

weights wij 

output yj 
 

     
 

x1 

   w11  

y1 

 

    

w21 

 

   

w12 

  
 

       
 

x2 

    w22  

y2 

 

      
 

   w2m     
 

  

wn1 

  w1m  
 

      
 

    wn2   
 

xn    

wnm 

 ym 
 

      
 

      Single layer  
 

      Perceptron  
 

 Fig. Simple Perceptron Model  
 

y j = f (net j) = 1 if net j ≥ 0 

where net j  =  

Σn
 xi  wij 

 

 0 if net j  0 i=1  
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■  Learning Algorithm : Training Perceptron 
 

The training of Perceptron is a supervised learning algorithm where 

weights are adjusted to minimize error when ever the output does not 

match the desired output. 

−  If the output is correct then no adjustment of weights is done. 

 

i.e.   W 
K+1 

=  W 
K 

 

i j i j 

 

  
 

 

−  If the output is 1  but should have been 0 then the weights are 

decreased on the active input link 

 

i.e. 

K+1 K 

−  α . 

xi 

 

W
 i j = W i j 

 

 

− If the output is 0 but should have been 1 then the weights are 

increased on the active input link 

 

 

i.e. 

 

 

K+1 

W i j 

 

 

K 

 

= W i j 

 

 

+ 

α 

 

 

. xi 

 

Where 

 

K+1 is the new adjusted weight, 

W i j 

 
 

K 

 

Wi j 

 

 

is 

 

 

the old weight 

 

 

xi 

 

is the input and α is the learning rate parameter. 
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αsmall leads to slow and α  large leads to fast learning. 

 

• Perceptron and Linearly Separable Task 
 

Perceptron can not handle tasks which are not separable. 

 

■  Definition : Sets of points in 2-D space are linearly separable if the sets 

can be separated by a straight line. 
 

■  Generalizing, a set of points in n-dimensional space are linearly 

separable if there is a hyper plane of (n-1) dimensions separates the 

sets. 
 

Example 

 

 

S1 S2 S1 

 

 

S2 

 

 

 

 

 

(a) Linearly separable patterns (b) Not Linearly separable patterns 

 

 

Note : Perceptron cannot find weights for classification problems that are 

not linearly separable. 
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• XOR Problem : 

Exclusive OR operation 

 

    X2     
 

Input x1 Input x2  Output 

(0, 1) 

   

(1, 1) 

 
 

        
 

    

   

 
 

0 0 

 

0 

Even parity  

 
 

      
 

1 1  0      
 

0 1  1 

Odd parity    (0, 0)   

  

X1 

 

1 0 

 

1 

  
 

   
 

      

(0, 1) 

 
 

XOR truth table 

    
 

 

Fig. Output of XOR in 

 

    
 

 

X1 , x2 plane 

 

Even parity is, even number of 1 bits in the input 

 

Odd parity is, odd number of 1 bits in the input 

 

■  There is no way to draw a single straight line so that the circles are on 

one side of the line and the dots on the other side. 
 

■  Perceptron is unable to find a line separating even parity input patterns 

from odd parity input patterns. 

 

35 
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SC - Neural Network –Single Layer learning 

• Perceptron Learning Algorithm 
 

The algorithm is illustrated step-by-step. 

 

■ Step 1 : 
 

Create 

 

 

a peceptron with (n+1) input neurons 

 

 

x0 

 

 

, x1 , . . . . . , . xn , 

 
 

where 

 

x0 = 1 is the bias input. 

 

Let O be the output neuron. 

 

■ Step 2 : 
 

Initialize weight W = (w0 , w1 , . . . . . , . wn ) to random weights. 

 

• Step 3 : 
 

Iterate through the input patterns Xj of the training set using the weight set; ie compute the weighted sum of inputs net j = 

Σn 

 

 

i=1 

for each input pattern j . 

 

• Step 4 : 
 

Compute the output y j using the step function 

 

 

y j = f (net j) = 1 if net j ≥ 0 where   net j  =  Σn
 xi  wij 

 

 

0 if net j  0 

i=1  
 

   
 

 

• Step 5 : 

 

for 

 
xi wi 
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Compare the computed output yj with the target output yj each 

input pattern j . 

 

If all the input patterns have been classified correctly, then output 

(read) the weights and exit. 

= Step 6 : 
 

Otherwise, update the weights as given below :    

If the computed outputs yj  is 1 but should have been 0, 

Then wi = wi - α  xi ,  i= 0, 1, 2, . . . . , n    

If the computed outputs yj  is 0 but should have been 1, 

Then wi = wi + α xi ,   i= 0, 1, 2, . . . . , n    

where α  is the learning parameter and is constant.   

 

z Step 7 : 
 

goto step 3 

 

• END  

36 
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SC - Neural Network –ADALINE 

6.2 ADAptive LINear Element (ADALINE) 

 

An ADALINE consists of a single neuron of the McCulloch-Pitts type, where 

its weights are determined by the normalized least mean square (LMS) 

training law. The LMS learning rule is also referred to as delta rule. It is a 

well-established supervised training method that has been used over a 

wide range of diverse applications. 

 

• Architecture of a simple ADALINE  
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- ADALINE Training Mechanism 
 

(Ref.  Fig. in the previous slide - Architecture of a simple ADALINE) 

 

- The basic structure of an ADALINE is similar to a linear neuron with an 
extra feedback loop.

 

 

■ During the training phase of ADALINE, the input vector 

 

X = [x1 , x2 , . . . , xn]T as well as desired output are presented 

 

to the network. 

 

■
  The weights are adaptively adjusted based on delta rule. 

• After  the  ADALINE  is  trained,  an  input  vector  presented  to  the
 

 

network with fixed weights will result in a scalar output. 

 

• Thus, the network performs an n dimensional mapping to a scalar 
value.

 

 

• The activation function is not used during the training phase. Once the 

weights are properly adjusted, the response of the trained unit can be 

tested by applying various inputs, which are
 

 

not  in  the  training  set.If  the  network  produces  consistent
 

 

responses to a high degree with the test inputs, it is said that the 

network could generalize. The process of training and generalization 

are two important attributes of this network. 

 

 

Usage of ADLINE 
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In practice, an ADALINE is used to Make binary decisions; the output is sent 

through a binary threshold. 

■  Realizations of logic gates such as AND, NOT and OR . 
 

■  Realize only those logic functions that  are linearly separable. 

 

■  Applications of Neural Network 
 

Neural Network Applications can be grouped in following categories: 

 

 Clustering:
 

 

A clustering algorithm explores the similarity between patterns and places 

similar patterns in a cluster. Best known applications include data 

compression and data mining.
 

 

 Classification/Pattern recognition:
 

 

The task of pattern recognition is to assign an input pattern (like 

handwritten symbol) to one of many classes. This category includes 

algorithmic implementations such as associative memory. 

 

• Function approximation :
 

 

The tasks of function approximation is to find an estimate of the unknown 

function subject to noise. Various engineering and scientific disciplines 

require function approximation.
 

 

• Prediction Systems:
 

 

The task is to forecast some future values of a time-sequenced data. 

Prediction has a significant impact on decision support systems. Prediction 

differs from function approximation by considering time factor. System 

may be dynamic and may produce different results for the same input 

data based on system state (time).
 



90 
 

 

Back-Propagation Network 

What is BPN ? 

• A single-layer neural network has many restrictions. This network can 

accomplish very limited classes of tasks. 
 

Minsky and Papert (1969) showed  that  a  two  layer  feed-forward 

network can overcome  many restrictions,  but they  did  not present 

a  solution to  the  problem as "how to  adjust the weights  from  input 

to hidden layer" ?        

• An answer to this question was presented by Rumelhart, Hinton 

and  Williams  in  1986.  The  central idea  behind  this  solution  is  that 

the errors for the units of the hidden  layer  are  determined  by 

back-propagating the errors of the units of the output layer.  

 

This method is often called the Back-propagation learning rule. 

 

Back-propagation can also be considered as a generalization of the delta 

rule for non-linear activation functions and multi-layer networks. 

 

• Back-propagation is a systematic method of training multi-layer artificial 

neural networks. 
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1. Back-Propagation Network – Background 

 

Real world is faced with a situations where data is incomplete or noisy. To 

make reasonable predictions about what is missing from the information 

 

available is a difficult task when there is no a good theory available that may to 

help reconstruct the missing data. It is in such situations the Back-propagation 

(Back-Prop) networks may provide some answers. 

 

• A BackProp network consists of at least three layers of units : 

 

- an input layer, 
 

- at least one intermediate hidden layer, and 
 

- an output layer. 
 

 

• Typically, units are connected in a feed-forward fashion with input units 

fully connected to units in the hidden layer and hidden units fully 

connected to units in the output layer. 

 

• When a BackProp network is cycled, an input pattern is propagated 

forward to the output units through the intervening input-to-hidden and 

hidden-to-output weights. 

 

• The output of a BackProp network is interpreted as a classification 

decision. 
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• With BackProp networks, learning occurs during a training phase. 

The steps followed during learning are : 

 

− each input pattern in a training set is applied to the input units and then 

propagated forward. 

 

− the  pattern  of  activation  arriving  at  the  output  layer  is  compared 

with the correct (associated) output pattern to calculate an error signal. 

 

− the  error  signal  for  each  such  target  output  pattern  is  then back-

propagated  from  the  outputs  to  the  inputs  in  order  to 

 

appropriately adjust the weights in each layer of the network. 

 

− after a BackProp network has learned the correct classification for a set 

of inputs, it can be tested on a second set of inputs to see how well it 

classifies untrained patterns. 

 

• An  important  consideration 

 

 

in 

 

 

applying 

 

 

BackProp 

 

 

learning 

 

 

is 

 

 

how 

 

well the network generalizes. 
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1.1 Learning : 

 

AND function 

 

Implementation of AND function in the neural network. 

 

 

 

− there are 4 inequalities in the AND function and they must be 

satisfied. 

 

w10 + w2 0 < θ , w1 0 + w2 1 < θ , 

 

w11 + w2 0 < θ , w1 1 + w2 1 > θ 

− one possible solution : 

if both weights are set to 1 and the threshold is set to 1.5, then 

 

(1)(0) + (1)(0) < 1.5 assign 0 , (1)(0) + (1)(1) < 1.5 assign 0 

(1)(1) + (1)(0) < 1.5 assign 0 , (1)(1) + (1)(1) > 1.5 assign 1 

Although it is straightforward to explicitly calculate a solution to the AND 

function problem, but the question is "how the network can learn such a 

solution". That is, given random values for the weights can we define an 

incremental procedure which will cover a set of weights which implements 

AND function. 
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1.2 Simple Learning Machines 

 

Rosenblatt (late 1950's) proposed learning networks called Perceptron. 

The task was to discover a set of connection weights which correctly 

classified a set of binary input vectors. The basic architecture of the 

perceptron is similar to the simple AND network in the previous example. 

A perceptron  consists of a set of  input  units and a single output unit. 
 

As in the AND network, the output of the perceptron is calculated n 

 

i=1 

If the net input is greater than the threshold θ , then the output unit is 

 

turned on , otherwise it is turned off. 

 

To address the learning question, Rosenblatt solved two problems. 

 

− first, defined a cost function which measured error. 

 

− second, defined a procedure or a rule which reduced that error by 

 

appropriately adjusting each of the weights in the network. 

 

However,  the procedure (or  learning rule)  required  to assesses   the 

relative contribution of each weight to the total error.  

The learning rule  that  Roseblatt  developed,  is  based  on  determining 

the difference between the  actual  output  of  the  network  with  the 

target output (0  or  1), called  "error measure"    
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• Error Measure ( learning rule ) 
 

Mentioned in the previous slide, the error measure is the difference 

between actual output of the network with the target output (0 or 1). 

 

― If the input vector is correctly classified (i.e., zero 

error), then the weights are left unchanged, and 
 

the next input vector is presented. 

 

― If the input vector is incorrectly classified (i.e., not zero 

error), then there are two cases to consider : 

 

Case 1 : If the output unit is 1 but need to be 0 then 

 

◊ the threshold is incremented by 1 (to make it less likely that the 

output unit would be turned on if the same input vector was 

presented again). 
 

◊ If the input Ii is 0, then the corresponding weight Wi is left 

unchanged. 
 

◊ If  the  input  Ii  is 1, then the corresponding weight  Wi   is 
 

decreased by 1. 

 

Case 2 : If output unit is 0 but need to be 1 then the opposite changes 

are made. 

 

09 
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SC - NN – BPN – Background 

• Perceptron Learning Rule : Equations 
 

The perceptron learning rules are govern by two equations, − 

one that defines the change in the threshold and 

 

− the other that defines change in the weights, 

 

The change in the threshold is given by 

 

∆  θ = - (tp  - op) = - dp 

 

where  p specifies the presented input pattern, 

op actual output of the input pattern Ipi 

tp specifies the correct classification of the input pattern ie target, 

dp is the difference between the target and actual outputs. 

 

The change in the weights are given by 

 

∆  wi = (tp  - op) Ipi  = - dp Ipi 

 

10 
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SC - NN - BPN – Background 

1.3 Hidden Layer 

 

Back-propagation is simply a way to determine the error values in hidden 

layers. This needs be done in order to update the weights. 

 

The best example to explain where back-propagation can be used is the 

XOR problem. 

 

Consider a simple graph shown below. 

 

− all points on the right side of the line are +ve, therefore the output of 

the neuron should be +ve. 

 

− all points on the left side of the line are –ve, therefore the output of the 

neuron should be –ve. 
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• Back Propagation Network 
 

Learning By Example 

 

Consider the Multi-layer feed-forward back-propagation network below. 

 

The subscripts I, H, O denotes input, hidden and output neurons. 

 

The weight of the arc between i th input neuron to j th hidden layer is Vij . 

The weight of the arc between i th hidden neuron to j th out layer is Wij 
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2.1 Computation of Input, Hidden and Output Layers 

 

- Input Layer Computation 
 

Consider linear activation function. 

 

If the output of the input layer is the input of the input layer and the 

transfer function is 1, then 

 

{ O }I 

 
 

= { I }I 

 

ℓ x 1 
 

ℓ x 1 

 

(denotes matrix row, column size) 

 

The hidden neurons are connected by synapses to the input neurons. 

 

- Let Vij be the weight of the arc between i th input neuron to j th hidden 

layer. 

 

■  The input to the hidden neuron is the weighted sum of the outputs of 

the input neurons. Thus the equation 
 

IHp = V1p OI1 + V2p OI2 + . . . . + V1p OIℓ where (p =1, 2, 3 . . , m) 

denotes weight matrix or connectivity matrix between input neurons 

and a hidden neurons as [ V ]. 

 

we can get an input to the hidden neuron as ℓ x m 

 

{ I }H  = [ V ] 
T
  { O }I 

 

m x 1 m x ℓ ℓ x 1 (denotes matrix row, column size) 
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SC - NN – Back Propagation Network 

• Hidden Layer Computation 
 

Shown below the pth neuron of the hidden layer. It has input from the 

output of the input neurons layers. If we consider transfer function as 

sigmoidal function then the output of the pth hidden neuron is given by 

1 
 

OHp
 
=

 ( 1 + e -
λ (IHP – θHP

)
) 

 
 

where OHp 

 

IHp 

 

θHP 

 
 

is the output of the pth hidden neuron, 

 

is the input of the pth hidden neuron, and is 

the threshold of the pth neuron; 
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Treating each component of the input of the hidden neuron separately, we 

get the outputs of the hidden neuron as given by above equation . 

 

The input to the output neuron is the weighted sum of the outputs of the 

hidden neurons. Accordingly, Ioq the input to the qth output neuron is 

given by the equation 

 

Ioq = W1q OH1 + W2q OH2 + . . . . + Wmq OHm , where (q =1, 2, 3 . . , n) 

 

It denotes weight matrix or connectivity matrix between hidden neurons 

and output neurons as [ W ], we can get input to output neuron as 

 

{ I }O  = [ W] 
T
  { O }H 

 

n x 1 n x m m x 1 (denotes matrix row, column size) 

■  Output Layer Computation 
 

Shown below the qth neuron of the output layer. It has input from the 

output of the hidden neurons layers. 

 

If we consider transfer function as sigmoidal function then the output of 

the qth output neuron is given by 
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1 

OOq
 
=

 ( 1 + e -
λ (IOq – θOq

)
) 

 
 

where OOq 

 

IOq 

 

θOq 

 
 
 

is the output of the qth  output neuron, 

is the input to the qth
 output neuron,  and 

is the threshold of the qth  neuron; 
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2.2 Calculation of Error 

 

(refer the earlier slides - Fig. "Multi-layer feed-forward back-propagation 

network" and a table indicating an 'nset' of input and out put data for the purpose 

of training) 

 

Consider any r th output neuron. For the target out value T, mentioned in 

the table- 'nset' of input and output data" for the purpose of training, 

calculate output O . 

 

The error norm in output for the r th output neuron is 

 E1
r = (1/2) e2

r = (1/2) (T –O)
2

   

where E1
r is 1/2 of the second norm of the error er in the r th  neuron 

  for the given training pattern.   

 e2
r is the square of the error, considered to make it independent 

  of sign +ve or –ve , ie consider only the absolute value. 

The Euclidean norm of error E1
 for the first training pattern is given by 

 

E1 = (1/2)  

Σn
 (Tor - Oor )2

   

   r=1    

 

This error function is for one training pattern. If we use the same 

technique for all the training pattern, we get 

 

E (V, W) = 

 
 

nset 

Σ 

r=1 

 

 

E j (V, W, I) 

 

 

where 

 

E is error function depends on 

 
 

m ( 1 + n) 
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weights of [W] and [V].  

 

All that is stated is an optimization problem solving, where the 

 

objective or cost function is usually defined to be maximized or 

 

minimized with respect to a set of parameters. In this case, the 

 

network parameters that optimize the error function E over the 'nset' 

 

of  pattern sets  [I nset , t nset ] are synaptic weight values [ V ]  and 

 

[ W ] whose sizes are 

 

[ V ] and [ W ] 

ℓ x m m x n 

 

16 
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SC - NN - BPN – Algorithm 

• Back-Propagation Algorithm 
 

The benefits of hidden layer neurons have been explained. The hidden layer 

allows ANN to develop its own internal representation of input-output mapping. 

The complex internal representation capability allows the hierarchical network 

to learn any mapping and not just the linearly separable ones. 

 

 

The step-by-step algorithm for the training of Back-propagation network is 

presented in next few slides. The network is the same , illustrated before, 

 

has a three layer. The input layer is with ℓ nodes, the hidden layer with m 

nodes and the output layer with n nodes. An example for training a BPN with 

five training set have been shown for better understanding. 

 

17 
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SC - NN - BPN – Algorithm 

3.1 Algorithm for Training Network 

 

The basic algorithm loop structure, and the step by step procedure of 

Back- propagation algorithm are illustrated in next few slides. 

 

■  Basic algorithm loop structure 
 

Initialize the weights 

 

Repeat 

 

For each training pattern 

 

"Train on that pattern" 

 

End 

 

Until the error is acceptably low. 

 

18 
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- Back-Propagation Algorithm - Step-by-step procedure 
 

 

 Step 1 : 
 

Normalize the I/P and O/P with respect to their maximum values. For 

each training pair, assume that in normalized form there are 

ℓ inputs given by { I }I and 

 

• x 1  

 outputs given by  { O}O 

n x 1 

 

• Step 2 : 
 

Assume  that  the number of  neurons  in  the  hidden  layers  lie 

 

between 1 < m < 21 

 

19 
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2. Step 3 : 

 

Let [ V ] represents the weights of synapses connecting input neuron 

and hidden neuron 

 

Let [ W ] represents the weights of synapses connecting hidden neuron 

and output neuron 

 

Initialize the weights to small random values usually from -1 to +1; 

 

[ V ] 0 

 

 

= [ random weights ] 

 

[ W ] 0 
 

= [ random weights ] 

 

 

[ ∆ 

 

V ] 0 

 

= [ ∆ 

 

W ] 0 

 

= [ 0 ] 

 

 

For 

 
 

general 

 
 

problems 

 

λ 

 
 

can 

 
 

be 

 
 

assumed as 

 
 

1 

 
 

and threshold 

 

value as 
 

0. 

 

 

20 
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• Step 4 : 
 

For training data, we need to present one set of inputs and 

outputs. Present the pattern as inputs to the input layer { I }I . 

then by using linear activation function, the output of the input layer 

may be evaluated as 

 

{ O }I  = { I }I 

ℓ x 1 ℓ x 1 

 

2. Step 5 : 
 

Compute the inputs to the hidden layers by multiplying corresponding 

weights of synapses as 

 

{ I }H  = [ V] 
T
  { O }I 

 

m x 1 m x ℓ ℓ x 1 

 

• Step 6 : 
 

Let the hidden layer units, evaluate the output using the sigmoidal 

function as 

 

  –  
 

  

– 
 

 

  
 

{ O }H = 

1   
 

    
 

( 1 + e - (IHi)) 
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  –   
 

  

– 

 

 

 

   
 

 m x 1 
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- Step 7 : 
 

Compute the inputs to the output layers by multiplying corresponding 

weights of synapses as 

 

{ I }O  = [ W] 
T
  { O }H 

 

n x 1 n x m m x 1 

 

■ Step 8 : 
 

Let the output layer units, evaluate the output using sigmoidal function 

as 

 

 

  –  
 

  

– 
 

 

  
 

 1   
 

{ O }O = 

    
 

( 1 + e - (IOj)) 
 

  –   
 

  

– 

 

 

 

   
 

 

Note : This output is the network output 

 

22 
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■ Step 9 : 
 

Calculate the error using the difference between the network output 

and the desired output as for the j th training set as 

 

EP = √ ∑ (Tj 
-
n 

Ooj 
)2 

 

 

 

Α Step 10 : 
 

Find a term { d } as 

 

 

– 

– 

 

{ d } = (Tk – OOk) OOk (1 – OOk ) 

 

– 

– 

n x 1 

 

23 
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■ Step 11 : 

 

Find [ Y ] matrix as 

 

 [ Y ] =  { O }H 〈 d 〈  

 m x n m x 1 1 x n  

■  Step 12 :     

Find 

[ ∆  W ] 
t +1

 =  

α [ ∆  W ] 
t
 + η [ Y ] 

 m x n  m x n m x n 

 

 

  Step 13 : 
 

Find 

 

 

{ e } = [ W ] { d } 

m x 1 m x n n x 1 

 

 

     –    
 

     

– 

 

 

 
 

       
 

   (OHi) (1 – OHi ) 
 

 { d* } = e i   
 

          
 

        

 

 
 

     –   
 

     

– 

 

 

 
 

       
 

   m x 1 m x 1 
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Find [ X ] matrix as  
 

 [ X ]  = { O }I   〈 d* 〈 

=  { I }I    〈 d* 

〈 
 

 1 x m ℓ x 11 x m ℓ x 11 x m 
 

 

24 
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• Step 14 : 
 

Find 

 

 

[ ∆ V ] t +1 

1 x m 

 

 

= 

 

 

α 

 

 

[ ∆ V ] t 

1 x m 

 

 

+ 

 

 

η [ X 

] 

1 x m 

 

 

1 Step 15 : 
 

Find [ V ] 
t +1

 = [V ] 
t
  + [ ∆  V ] 

t +1
 

 

[ W ] 
t +1

 = [W ] 
t
 + [ ∆  W ] 

t +1
 

 

ƒ  Step 16 : 
 

Find error rate as 

∑ Ep 

error rate = 

 

nset 

 

• Step 17 : 
 

Repeat steps 4 to 16 until the convergence in the error rate is less 

than the tolerance value 

 

• End of Algorithm 
 

Note : The implementation of this algorithm, step-by-step 1 to 17, 

assuming one example for training BackProp Network is illustrated in 

the next section. 
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3.2 Example : Training Back-Prop Network 

 

• Problem : 
 

Consider a  typical problem where there are 5 training sets. 

 

 

 Table : Training sets  

S. No.  Input Output 

 I1 I2 O 

1 0.4 -0.7 0.1 

2 0.3 -0.5 0.05 

3 0.6 0.1 0.3 

4 0.2 0.4 0.25 

5 0.1 -0.2 0.12 

 

In this problem, 

 

- there are two inputs and one output. 

 

■  the values lie between -1 and +1 i.e., no need to normalize the values. 
 

- assume two neurons in the hidden layers. 

 

• the NN architecture is shown in the Fig. below. 
 

 

0.4 

  

0.1  

  

0.2 

  
 

      
 

         
 

0.4 -0.2 
  

TO = 0.1 
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-0.5 

 
 

 
 

-0.7 

  

0.2 

     
 

       
 

       
 

     
 

   
 

Input 

  

Output 

 

Hidden 
 

layer layer layer 
 

 

 

Fig. Multi layer feed forward neural network (MFNN) architecture 

 

with data of the first training set 

 

 

The solution to problem are stated step-by-step in the subsequent slides. 
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■ 

            SC - NN - BPN – Algorithm 
 

Step 1 : Input  the first training set data (ref eq. of step 1) 
 

         0.4    
 

 { O }I =  { I }I = 

-0.7 

   
 

 

ℓ x 1 

   

ℓ x 1 

     
 

        

2 x 1 

   
 

              
 

        from training set s.no 1   
 

■ Step 2 : Initialize the weights  as  (ref eq. of step 3 & Fig) 
 

      

0.1 0.4 

    0.2  
 

   

0 

    

[ W ] 0 = 

 
 

 

[ V ] = 

       
 

   

-0.2 0.2 

 

; 

 

-0.5 

 
 

         
 

          

2 x1 

 

        

2x2 

   
 

             
 

     from fig initialization    from fig initialization 
 

■ Step 3 :  Find  { I }H = [ V] 
T

 { O }I as (ref eq. of step 5) 
 

      0.1  -0.2   0.4 

= 

0.18  
 

 { I }H  = 

-0.4 

 

0.2 

  

-0.7 0.02 

 
 

           
 

 

 

Values from step 1 & 2 
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■  Step 4 : 

    SC - NN - BPN – Algorithm 
 

    (ref eq. of step 6) 
 

  1    
 

       
 

   ( 1 + e - (0.18))    
 

    0.5448 
 

{ O }H = 

     

= 

 

 

1 

  
 

    0.505 
 

   ( 1 + e - (0.02))    
 

       
 

 

 

Values from step 3 values 
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        SC - NN - BPN – Algorithm 
 

Step 5 :       (ref eq. of step 7) 
 

         0.5448  
 

 { I }O = [ W] 
T

 { O }H = ( 0.2 - 0.5 ) 
0.505 

= - 0.14354 
 

          
 

    Values from step 2 , from step 4  
 

■ Step 6 :       (ref eq. of step 8) 
 

           
 

 

{ O }O = 

  1     

= 0.4642 

 
 

        
 

  

( 1 + e 

- (0.14354) 

) 

   
 

         
 

           
 

   Values from step 5      
 

■ Step 7 :       (ref eq. of step 9) 
 

 Error = (TO – OO1 )2  = (0.1 – 0.4642)2 = 0.13264  
 

 table first training set o/p      from step 6  
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■ Step 8 : (ref eq. of step 10) 

 

■  = (TO – OO1 ) ( OO1 ) (1 – OO1 ) 
 

= (0.1 – 0.4642) (0.4642) ( 0.5358) = – 0.09058 

 

 

 Training o/p all from step 6   
 

     (ref eq. of step 11) 
 

    0.5448  –0.0493 
 

 [ Y ] = { O }H (d ) =  

0.505 

(– 0.09058) = 

–0.0457 

 

     
 

 from values at step 4   from values at step 8 above 
 

■ Step 9 :    (ref eq. of step 12) 
 

 

[ ∆  W ] 
1

 = 

α [ ∆  W ] 
0

 + 

η [ Y 

] assume  η  =0.6 
 

  –0.02958     
 

 = 

–0.02742 

    
 

      
 

 from values at step 2 & step 8 above  
 

■ Step 10 :    (ref eq. of step 13) 
 

    0.2 –0.018116 
 

 { e } = [ W ] { d } =  (– 0.09058) =  
 

   -0.5 –0.04529 
 

 

from values at step 8 above 

from values at step 2 
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■ 

   SC - NN - BPN – Algorithm 
 

Step 11 :   (ref eq. of step 13) 
 

 (–0.018116) (0.5448) (1- 0.5448)  –0.00449 
 

 { d* } =   = 

–0.01132 

 

 (0.04529) (0.505) ( 1 – 0.505)  
 

 from values at step 10 at step 4 at step 8   
 

■ Step 12 :   (ref eq. of step 13) 
 

 

 

 0.4   

[ X ] = { O }I  ( d* ) = -0.7 ( – 0.00449   0.01132) 

from values at step 1  from values at step 11 above 

 – 0.001796 0.004528 

 

■  0.003143   –0.007924
 

 

 

 

 

■  Step 13 : (ref eq. of step 14) 
 

[ ∆ V ] 
1

 =  α  [ ∆ V ] 
0

  + η [ X ] = 

– 0.001077 0.002716 
 

0.001885 –0.004754 
 

 
 

 

 

from values at step 2 & step 8 above 
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■  Step 14 : 

    SC - NN - BPN – Algorithm 
 

    (ref eq. of step 15) 
 

[ V ] 
1

 

 0.1 0.4 – 0.001077 0.002716 
 

= 

-0.2 0.2 

+ 

–0.004754 

 

  0.001885 
 

from values at step 2 from values at step 13 
 

  – 0.0989 0.04027  
 

 = 

0.1981 –0.19524 

 
 

   
 

[ W ] 
1

 

 0.2 

+ 

–0.02958 0.17042 
 

= 

-0.5 

= 

–0.52742 

 

   –0.02742 
 

from values at step 2, from values at step 9 
 

 

 

• Step 15 : 
 

With the updated weights [ V ] and [ W ] , error is calculated again and 

next training set is taken and the error will then get adjusted. 

 

• Step 16 : 
 

Iterations are carried out till we get the error less than the tolerance. 

 

• Step 17 : 
 

Once the weights are adjusted the network is ready for inferencing 

new objects . 
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Associative Memory 

 

 

What is Associative Memory ? 

 

• An associative memory is a content-addressable structure that maps a 
 

set of input patterns to a set of output patterns. 

 

― A content-addressable structure is a type of memory that allows the recall 

of data based on the degree of similarity between the input pattern and 

the patterns stored in memory. 

 

― There are two types of associative memory : auto-associative and hetero-

associative. 
 

• An 

 

 

auto-associative memory retrieves a

 previously 

 

 

stored 

 

 

pattern 

 
 

that 

 

most closely resembles the current pattern. 

 

• In  a  hetero-associative  memory,  the  retrieved  pattern  is  in  general, 
 

 

different from the input pattern not only in content but possibly also in 

type and format. 

 

• Neural networks are used to implement these associative memory models 

called NAM (Neural associative memory). 
 

03 
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SC - AM description 

1. Associative Memory 

 

An associative memory is a content-addressable structure that maps a set of 

input patterns to a set of output patterns. A content-addressable 

 

structure refers to a memory organization where the memory is accessed by its 

content as opposed to an explicit address in the traditional computer 

 

memory system. The associative memory are of two types : auto-associative 

and hetero-associative. 

 

� An auto-associative memory retrieves a previously stored pattern that most 

closely resembles the current pattern. 

� In hetero-associative memory, the retrieved pattern is in general different 
 

 

from the input pattern not only in content but possibly also in type and 

format. 
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SC - AM description 

1.1 Description of Associative Memory 

 

An associative memory is a content-addressable structure that allows, the 

recall of data, based on the degree of similarity between the input pattern 

and the patterns stored in memory. 

 

• Example : Associative Memory 
 

The figure below shows a memory containing names of several people. 

If the given memory is content-addressable, 

 

Then using the erroneous string "Crhistpher Columbos" as key is 

sufficient to retrieve the correct name "Christopher Colombus." 

 

In this sense, this type of memory is robust and fault-tolerant, because 

this type of memory exhibits some form of error-correction capability. 

 

• Associative memory is a system that associates two patterns (X, Y) 

such that when one is encountered, the other can be recalled. The 

associative memory are of two types : auto-associative memory and 

hetero-associative memory. 

 

Auto-associative memory 

 

Consider, y[1], y[2], y[3], . . . . . y[M], be the number of stored 

pattern vectors and let y(m) be the components of these vectors, 

representing features extracted from the patterns. The auto-

associative memory will output a pattern vector y(m) when inputting a 

noisy or incomplete version of y(m). 
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Hetero-associative memory 

 

Here the memory function is more general. Consider, we have a 

number of key-response pairs {c(1), y(1)}, {c(2), y(2)}, . . . . . . , 

{c(M), y(M)}. The hetero-associative memory will output a pattern 

vector y(m) if a noisy or incomplete verson of the c(m) is given. 

 

• Neural networks are used  to  implement  associative  memory models. 
 

 

- Linear associater is the simplest artificial neural associative memory. 
 

 

- Hopfield model and Bidirectional Associative Memory (BAM) are 

the other popular ANN models used as associative memories. 
 

These models follow different neural network architectures to 

memorize information. 
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1.2 Working of Associative Memory 

 

■  Example 
 

An associative memory is a storehouse of associated patterns which are 

encoded in some form. 

 

− When  the  storehouse  is  triggered  or  excited  with  a  pattern,  then 

 

the associated pattern pair is recalled or appears at the output. 
 

− The input could be an exact or distorted or partial representation of 
 

a stored pattern.         
 

Fig below illustrates the working of an associated memory. 
 

                

The associated pattern pairs 

 

                
 

       

 

  

 

      
 

      ∆  Γ      (∆  , Γ ), ( , +), (7 , 4). 
 

Input          Recalled 

The association is represented 

 

Pattern         Pattern  
 

                

by the symbol 

 

 

∆ 

    

7 

  

 

   

Γ 

  
 

  

       

  

  
 

          
 

 

 

The  associated  pattern  pairs 

+ 4 are stored the memory. 

. 

Fig. Working of an associated memory 

 W

h

e

n
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 the memory is triggered with an input pattern say 

 

the associated pattern Γ is retrieved automatically. 

 

 

∆ 

 

 

then 
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1.3 Associative Memory - Classes 

 

As stated before, there are two classes of associative memory: 

 

• auto-associative and 
 

• hetero-associative memory. 

 

An auto-associative memory, also known as auto-associative correlator, is 

used to retrieve a previously stored pattern that most closely resembles 

the current pattern; 

 

A hetero-associative memory, also known as hetero-associative correlator, 

is used to retrieve pattern in general, different from the input pattern not 

only in content but possibly also different in type and format. 

 

Examples 

 

 

Input 

 

Recall of Presented 

 

Recall of 

 

  
 

pattern  associated distorted  perfect 
 

presented 

 

pattern pattern 

 

pattern 
 

  
 

Hetero-associative memory Auto-associative memory 
 

 

 

 

Fig. Hetero and Auto Associative memory Correlators 
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1.4 Related Terms 

 

Here explained : Encoding or memorization, Retrieval or recollection, 

Errors and Noise, Memory capacity and Content-addressability. 

 

■  Encoding or memorization 
 

Building an associative memory means, constructing a connection weight 

matrix W such that when an input pattern is presented, and the stored 

pattern associated with the input pattern is retrieved. 

 

This process of constructing the connection weight matrix is called 

encoding. During encoding, for an associated pattern pair (Xk, Yk) , the 

weight values of the correlation matrix Wk are computed as 

(wij)k  = (xi)k  (yj)k , where 

(xi)k represents the i th  component of pattern Xk  , and 

(yj)k represents the j th  component of pattern Yk 

for i = 1, 2, . . . , m and   j = 1, 2, . . . , n. 

 

Constructing of the connection weight matrix W is accomplished by 
 

summing up the individual correlation matrices Wk , i.e., 
 

W = α 

Σ
p Wk   where   

 

α 

 k=1   
 

is the proportionality or normalizing constant. 
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• Retrieval or recollection 
 

After memorization, the process of retrieving a stored pattern, given an 

input pattern, is called decoding. 

 

Given an input pattern X, the decoding or recollection is accomplished by: 

 

 

first compute the net input to the output units using 

 

input j 

 

 

= 

 

 

Σ

m 

j=1 

 

 

xi 

 

 

w i j 

 

 

where 

 

 

input j 

 
 

is weighted sum of the input or activation 

 
 

value of 

 

node j , for j = 1, 2, ..., n. 

 

then determine the units output using a bipolar output function: 

 

 

+1 if input j ≥ θ j 

Y j  = 

- 1 other wise 

where θ j  is the threshold value of output neuron j . 
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■  Errors and noise 
 

The input pattern may contain errors and noise, or may be an incomplete 

version of some previously encoded pattern. 

 

When a corrupted input pattern is presented, the network will retrieve the 

stored pattern that is closest to actual input pattern. 

 

The presence of noise or errors results only in a mere decrease rather 

than total degradation in the performance of the network. 

 

Thus, associative memories are robust and fault tolerant because of many 

processing elements performing highly parallel and distributed 

computations. 
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- Performance Measures 
 

The memory capacity and content-addressability are the measures of 

associative memory performance for correct retrieval. These two 

performance measures are related to each other. 

 

Memory capacity refers to the maximum number of associated pattern pairs 

that can be stored and correctly retrieved. 

 

Content-addressability is the ability of the network to retrieve the correct 

stored pattern. 

 

If input patterns are mutually orthogonal - perfect retrieval is possible. 

 

If the stored input patterns are not mutually orthogonal - non-perfect 

retrieval can happen due to crosstalk among the patterns. 
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2. Associative Memory Models 

 

An associative memory is a system which stores mappings of specific input 

representations to specific output representations. 

 

− An associative memory "associates" two patterns such that when one is 

encountered, the other can be reliably recalled. 

 

− Most associative memory implementations are realized as connectionist 

networks. 

 

The simplest associative memory model is Linear associator, which is a feed-

forward type of network. It has very low memory capacity and therefore not 

much used. 

 

The popular models are Hopfield Model and Bi-directional Associative Memory 

(BAM) model. 

 

The Network Architecture of these models are presented in this section. 

 

13 
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SC - AM models 

2.1 Associative Memory Models     

The simplest  and  among  the  first  studied associative  memory models 

is Linear associator. It is a feed-forward type of network where the 

output  is  produced  in  a single  feed-forward  computation.  It can be 

used  as  an  auto-associator  as  well  as  a hetero-associator, but it 

possesses a very low memory capacity and therefore not much used. 

The popular  associative  memory  models are   Hopfield Model and 

 

Bi-directional Associative Memory (BAM) model. 

 

− The  Hopfield  model  is  an  auto-associative  memory,  proposed  by 

John Hopfield in 1982. It is an ensemble of simple processing units that  

have  a  fairly  complex  collective  computational  abilities  and 

behavior.  The  Hopfield  model  computes  its  output  recursively  in 

time  until  the  system  becomes  stable.  Hopfield  networks  are 

 

designed using bipolar units and a learning procedure. 

 

− The Bi-directional associative memory (BAM) model is similar to linear 

associator, but the connections are bi-directional and therefore allows 

forward and backward flow of information between the layers. The BAM 

model can perform both auto-associative and hetero-associative recall 

of stored information. 

 

The network architecture of these three models are described in the next 

few slides. 

 

14 
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2.2 Network Architectures of AM Models 

 

The neural associative memory models follow different neural network 

architectures to memorize information. The network architectures 

 

are either single layer or two layers . 

 

• The Linear associator model, is a feed forward type network, consists, 

two layers of processing units, one serving as the input layer while the 

other as the output layer. 

 

• The Hopfield model, is a single layer of processing elements where 

each unit is connected to every other unit in the network other than 

itself. 

 

• The Bi-directional associative memory (BAM) model   is  similar  to 
 

that of linear associator but the connections are bidirectional. 

 

In this section, the neural network architectures of these models and the 

construction of the corresponding connection weight matrix W of the 

associative memory are illustrated. 

 

15 
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SC - AM models 

3. Linear Associator Model (two layers) 
 

It is a feed-forward type network where the output is produced in a 

 

single  feed-forward  computation.  The  model  consists of two  layers 

of processing units, one serving as the input layer while the other as 

the  output  layer.  The  inputs   are  directly  connected to the outputs, 

 

via a series of weights. The links carrying weights connect every input to 

every output. The sum of the products of the weights and the 

 

inputs  is  calculated in  each  neuron  node.  The network  architecture 
 

of the linear associator is as shown below.  
 

 

weights wij 

neurons  
 

   
 

x1 

w11  

y1 

 

w21 

 
 

   
 

 w12   
 

x2 

w22  

y2 

 

  
 

inputs 

w2m  

outputs 
 

 

w1m 

 

 

wn1 

 
 

   
 

 wn2   
 

Xn wnm  Ym 
 

 

 

Fig. Linear associator model 
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− all n input units are connected to all m output units via connection 

 

 

weight matrix W = [wij]n x m where wij denotes the strength of the 

unidirectional connection from the i th input unit to the j th output unit. 

 

 

− the  connection  weight  matrix  stores  the  p  different  associated 

 

pattern pairs {(Xk, Yk) | k = 1, 2, ..., p} . 

 

− building  an  associative  memory  is  constructing  the  connection 

weight  matrix  W  such  that  when  an  input  pattern  is  presented, 

 

then the stored pattern associated with the input pattern is retrieved. 
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− Encoding : The process of constructing the connection weight matrix is 

called encoding. During encoding the weight values of correlation matrix 

Wk for an associated pattern pair (Xk, Yk) are computed as: 

 

(wij)k  = (xi)k  (yj)k where 

 

(xi)k  is the i th  component of pattern Xk  for i = 1, 2, ..., m, and 

 

th 

(yj)k  is the j component of pattern Yk  for j = 1, 2, ..., n. 

 

− Weight matrix :   Construction of weight matrix W  is accomplished 

by summing those individual correlation matrices Wk, ie, W = α 

Σ
p

 Wk 
 

where α   is the constant of proportionality, for  normalizing, 

k=1 
 

usually 
 

set to 1/p to store p different associated pattern pairs.   
 

 

− Decoding : After memorization, the network can be used for retrieval; 

 

the process of retrieving a stored pattern, is called decoding; given an 

input pattern X, the decoding or retrieving is accomplished by 

computing, first the net Input as input j = Σm
 xi w i j where 

j=1 
 

input j stands for the weighted sum of the input or activation value of 

node j , for j = 1, 2, . . , n. and xi is the i 
th

 component of pattern Xk , and 

then determine the units Output using a bipolar output function: 

 

+1 if input j ≥ θ j 

Y j  = 

- 1 other wise 

 



144 
 

where θ j  is the threshold value of output neuron j . 

 

Note: The output units behave like linear threshold units; that compute 

a weighted sum of the input and produces a -1 or +1 depending 

whether the weighted sum is below or above a certain threshold value. 

 

− Performance : The input pattern may contain errors and noise, or an 

incomplete version of some previously encoded pattern. When such 

corrupt input pattern is presented, the network will retrieve the stored 

pattern that is closest to actual input pattern. Therefore, the linear 

associator is robust and fault tolerant. The presence of noise or error 

results in a mere decrease rather than total degradation in the 

performance of the network. 
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SC - AM models 

2 Auto-associative Memory Model - Hopfield model (single layer) 
 

Auto-associative memory means patterns rather than associated pattern 

pairs, are stored in memory. Hopfield model is one-layer 

 

unidirectional auto-associative memory. 

− the model consists, a single layer of processing elements where each 

 

unit is connected to every other unit in the network but not to itself. 

 

− connection  weight  between  or  from  neuron  j  to  i  is  given  by  a 

 

number  wij.  The  collection of all such numbers are represented 
 

by the weight matrix W  which is square and symmetric, ie, w i j = w j i 
 

for i,  j = 1, 2, . . . . . , m.       
 

− each  unit has an external input  I which  leads to  a modification 
 

in the computation of the net input to the units as  
 

input j = Σm
 xi w i 

j + I j  for  j = 1, 2, . . ., m.   
 

   i=1         
 

and x 

i 

is the i th component of pattern X   
 

         k   
 

− each unit acts as both input and output unit. Like linear associator, 
 

 

a single associated pattern pair is stored by computing the weight 

matrix as Wk = X k
T Yk where XK = YK 

− Weight Matrix :  Construction of weight matrix W  is accomplished by 

summing those individual correlation matrices, ie, W = 

α 

Σ

p Wk where 
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     k=1  

α  is the constant of proportionality, for  normalizing, usually set  to 1/p 

to  store   p  different  associated  pattern  pairs.  Since  the Hopfield 

model  is  an  auto-associative memory model, it is the patterns 

rather than associated pattern pairs, are stored in memory.  

 

− Decoding : After memorization, the network can be used for retrieval; the 

process of retrieving a stored pattern, is called decoding; given an 

 

input pattern X, the decoding or retrieving mis accomplished by 

computing, first the net Input as input j = Σ xi w i j where input j 

j=1 
 

stands for the weighted sum of the input or activation value of node j , 

for j = 1, 2, ..., n. and xi is the i th component of pattern Xk , and then 

determine the units Output using a bipolar output function: 

 

+1 if input j ≥ θ j 

Y j  = 

- 1 other wise 

 

where θ j  is the threshold value of output neuron j . 

 

Note: The output units behave like linear threshold units; that compute a 

weighted sum of the input and produces a -1 or +1 depending whether the 

weighted sum is below or above a certain threshold value. 

 

Decoding in the Hopfield model is achieved by a collective and recursive 

relaxation search for a stored pattern given an initial stimulus pattern. 

Given an input pattern X, decoding is accomplished by computing the net 

input to the units and determining the output of those units using the 

output function to produce the pattern X'. The pattern X' is then fed back 

to the units as an input pattern to produce the pattern X''. The pattern X'' 

is again fed back to the units to produce the pattern X'''. The process is 
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repeated until the network stabilizes on a stored pattern where further 

computations do not change the output of the units. 

 

In the next section, the working of an auto-correlator : how to store 

patterns, recall a pattern from the stored patterns and how to recognize a 

noisy pattern are explained. 
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■  Bidirectional Associative Memory (two-layer) 
 

Kosko  (1988)  extended the   Hopfield model, which is single layer, 

by incorporating an additional layer to perform recurrent 

auto-associations as   well   as   hetero-associations   on the stored 

memories.  The network structure of the bidirectional associative 

 

memory model is similar to that of the linear associator but the 

 

connections are bidirectional;  i.e.,   
 

wij = wji , for  i = 1, 2, . . . , n  and  j = 1, 2, . . . , m. 
 

  neurons 

weights wij 

neurons  
 

     
 

 

x1 

  w11  

y1 

 

   

w21 

 
 

      
 

  w12   
 

 

x2 

  w22  

y2 

 

     
 

inputs 

w2m  

outputs 
 

   

w1m 

 

  

wn1 

   
 

      
 

    wn2   
 

 Xn   wnm  Ym 
 

 

 

Fig. Bidirectional Associative Memory model 
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− In the bidirectional associative memory, a single associated pattern 

 

pair is stored by computing the weight matrix as Wk  = X k
T
 Yk  . 

 

 

− the  construction  of  the  connection  weight  matrix  W,  to  store  p 

 

different associated  pattern  pairs simultaneously,  is  accomplished 

by summing up the individual correlation matrices Wk , 

i.e.,  W = α 

Σ
p

 Wk  

  k=1   

where α is the proportionality or normalizing constant. 
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SC -  AM – auto correlator 

• Auto-associative Memory (auto-correlators) 

 

In the previous section, the structure of the Hopfield model has been 

explained. It is an auto-associative memory model which means patterns, rather 

than associated pattern pairs, are stored in memory. In this section, the working 

of an auto-associative memory (auto-correlator) is illustrated using some 

examples. 

 

Working of an auto-correlator : 

 

− how to store the patterns, 

 

− how to retrieve / recall a pattern from the stored patterns, − 

how to recognize a noisy pattern 

 

 

and 

 

 

21 
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SC - AM – auto correlator 

• How to Store Patterns : Example 
 

Consider the three bipolar patterns A1 , A2, A3 to be stored as an auto-

correlator. 

 

A1 = (-1, 1 , -1 ,  1 ) 

 

A2 = ( 1, 1 , 1 , -1 ) 

 

A3 = (-1, -1 , -1 ,  1 ) 

 

Note that the outer product of two vectors U and V is 

 

 U1   U1V1 U1V2 U1V3 
 

U   V   =  U 
T

 V  = U2 

 

= U2V1 U2V2 U2V3 

 

V1  V2 V3 
 

 

U3 

  

U3V1 U3V2 U3V3 
 

   
 

 U4   U4V1 U4V2 U4V3 
 

 

 

Thus, the outer products of each of these three A1 , A2, A3 bipolar patterns 

are 

 

    j 
 

T 
1 -1 1 -1 

 

-1  1 -1  1 
 

[A1 ] 4x1  [A1 ] 1x4    = 

 

1 -1 1 -1 
 

 

• -1  1 -1  1 

 

    j 
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T 
1 1 1 -1 

 

1 1 1 -1 
 

[A2 ] 4x1  [A2 ] 1x4    = 

 

1 1 1 -1 
 

 

e -1 -1 -1  1 

 

    j 
 

T 
1 1 1 -1 

 

1 1 1 -1 
 

[A3 ] 4x1  [A3 ] 1x4    = 

 

1 1 1 -1 
 

 

• -1 -1 -1  1 
 

 

Therefore the connection matrix  is 

       
 

      j  
 

           
 

 

3 T 

  3 1 3 -3 
 

   

1 3 1 -1 
 

T = [t i j ] = Σ  [Ai ] 4x1  [Ai ] 1x4 

 

3 1 3 -3 
 

 i=1 =  

i -3 -1 -3 3 
 

    
 

           
 

 
 

This is how the patterns are stored . 

 

22 



153 
 

SC - AM – auto correlator 

• Retrieve a Pattern from the Stored Patterns (ref. previous slide) 
 

The  previous  slide  shows  the  connection  matrix   T  of the  three 
 

bipolar patterns A1 , A2, A3  stored as 

         
 

      

i 

  
 

            
 

             
 

 

3 T 

   3 1 3 -3  
 

    

1 3 1 -1 

 
 

T = [t i j ] = 

Σ  [Ai ] 

4x1 [Ai ] 1x4 = 

  
 

 3 1 3 -3  
 

 i=1    

j -3 -1 -3 3 

 
 

      
 

            
 

and one of the three stored pattern is  A2 = ( 1, 1 , 1 , -1 )  
 

          ai  
 

− Retrieve or recall of this pattern A2 from the three stored patterns. 
 

 

 

− The recall equation is 

 

anewj = ƒ (ai  t i j  , aj
old

 )  for ∀ j = 1 , 2 , . . . , p 

Computation for the recall equation 

A2  yields  α  = ∑ ai t i j   

and 

then find β   

 

 

i =  

 

α = ∑ ai t i , 

j=1 α = ∑ ai t 

i , j=2 α = ∑ ai 

t i , j=3 α = ∑ 

ai t i , j=4 

 

 
 

1  2  3 4 α β 

1x3 + 1x1 + 1x3 + -1x-3 = 10 1 

1x1 + 1x3 + 1x1 + -1x-1 =  6 1 
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1x3 + 1x1 + 1x3 + -1x-3 = 10 1 

1x-3 + 1x-1 + 1x-3 + -1x3 = -1 -1 

 

 

Therefore 
a

 
new

j = ƒ (ai  t i j  , aj
old

 ) for ∀ j = 1 , 

2 , . . . , p is ƒ (α  , β ) 

anew1 

= ƒ (10 , 1) 
 

 
 

anew2 = ƒ (6 ,  1) 
 

anew3 = ƒ (10 , 1) 
 

a
new

4  = ƒ (-1 , -1) 

 

The values of β is the vector pattern ( 1, 1 , 1 , -1 ) which is A2 . 

 

This is how to retrieve or recall a pattern from the stored patterns. 

 

Similarly, retrieval of vector pattern A3  as   
 

new new new new 

= ( -1, -1 , -1 , 1 ) = A3 

 

( a 1   , a 2 , a 3    , a 4  , ) 
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SC - AM – auto correlator 

 

• Recognition of Noisy Patterns  (ref. previous slide) 

 

Consider a vector A' = ( 1, 1 , 1 , 1 ) which is a noisy presentation 

 

of one among the stored patterns. 

 

− find the proximity of the noisy vector to the stored patterns 

 

using Hamming distance measure. 

 

− note that the Hamming distance (HD) of a vector X from Y, where 

 

X = (x1 , x2 , . . . , xn) and Y = ( y1, y2 , . . . , yn) is given by HD 

(x , y) = Σm
 | (xi - yi ) | 

i=1 

 

The HDs of A' from each of the stored patterns A1 , A2, A3  are 

 

HD (A' , A1) = ∑ |(x1  - y1 )|, |(x2 - y2)|, |(x3  - y3 )|, |(x4  - y4 )| 

 

= ∑ |(1 - (-1))|, |(1 - 1)|, |(1 - (-1) )|, |(1 - 1)| 

 

= 4 

 

HD (A' , A2) = 2 

 

HD (A' , A3) = 6 

 

Therefore the vector A' is closest to A2  and so resembles it. 

 

In other words the vector A' is a noisy version of vector A2. 

 

Computation of recall equation using vector A' yields : 
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i =  

 

α = ∑ ai t i , 

j=1 α = ∑ ai t 

i , j=2 α = ∑ ai 

t i , j=3 α = ∑ 

ai t i , j=4 

 

 
 

1  2  3 4 α β 

1x3 + 1x1 + 1x3 + 1x-3 = 4 1 

1x1 + 1x3 + 1x1 + 1x-1 = 4 1 

1x3 + 1x1 + 1x3 + 1x-3 = 4 1 

1x-3 + 1x-1 + 1x-3 + 1x3 = -4 -1 

 

 

Therefore   a 
new

j = ƒ (ai t i j  ,aj
old

 
) for ∀ j = 1 , 2 , . . . , p  is ƒ (α  , β ) 

 

anew1 

= ƒ (4 , 1) 

 
 

  
 

anew2 = ƒ (4 , 1)  
 

anew3 = ƒ (4 , 1)  
 

a
new

4  = ƒ (-4 , -1) 

 

The values of β is the vector pattern ( 1, 1 , 1 , -1 ) which is A2 . 

Note :  In  presence of noise or in case of partial representation of vectors, 

     

an  autocorrelator results  in the  refinement  of  the  pattern  or removal  of 

noise to retrieve the closest matching stored pattern.   
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       SC - Bidirectional hetero AM 

4. Bidirectional Hetero-associative Memory     

The  Hopfield  one-layer  unidirectional auto-associators  have  been  discussed 

in  previous  section.  Kosko  (1987)  extended  this  network  to  two-layer 

bidirectional structure  called Bidirectional  Associative  Memory  (BAM)  which 

can achieve hetero-association. The important performance attributes of the 

BAM is its ability to recall stored pairs particularly in the presence of noise.  

Definition : If the associated pattern pairs (X, Y) are  different and if the 

model recalls a pattern Y given a pattern  X or vice-versa, then it is 

termed as hetero-associative memory.      

 

This section illustrates the bidirectional associative memory : 

 

• Operations (retrieval, addition and deletion) , 
 

• Energy Function (Kosko's correlation matrix, incorrect recall of pattern), 
 

• Multiple training encoding strategy (Wang's generalized correlation matrix). 
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SC - Bidirectional hetero AM 

4.1 Bidirectional Associative Memory (BAM) Operations 

 

BAM is a two-layer nonlinear neural network. 

 

Denote one layer as field A with elements Ai and the other layer as field B 

with elements Bi. 

 

The basic coding procedure of the discrete BAM is as follows. 

 

Consider N training pairs { (A1 , B1) , (A2 , B2), . . , (Ai , Bi), . . (AN , BN) } 

where  Ai = (ai1 , ai2 , . . . , ain) and Bi = (bi1 , bi2 , . . . , bip) and 

 aij , bij  are either in ON or OFF state.   

− in binary mode , ON = 1 and OFF =  0 and   

in bipolar mode, ON = 1 and OFF = -1     

− the original correlation matrix of the BAM is 

M0  = 

ΣN
 [ Xi

T
 ] [ Yi  ] 

          i=1   

where Xi = (xi1 , xi2 , . . . , xin) and Yi = (yi1 , yi2 , . . . , yip)  

and  xij(yij) is the bipolar form of aij(bij)    

The energy function E 

for the pair 

(α  , β ) and correlation matrix M is 

 E = - α M β 
T

           

With  this  background, the decoding  processes, means the  operations 

to retrieve nearest pattern pairs,  and the addition and deletion of 

the pattern pairs are illustrated in the next few slides.  
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SC - Bidirectional hetero AM 

 

• Retrieve the Nearest of a Pattern Pair, given any pair 

(ref : previous slide) 
 

Example 

 

Retrieve the nearest of (Ai , Bi) pattern pair,  given any pair (α  , β ) . 

 

The methods and the equations for retrieve are : 

 

− start with an initial condition which is any given pattern pair (α  , β ), 

 

− determine a finite sequence of pattern pairs (α ' , β ' ) , (α " , β " ) . 

. . . 

 

until an equilibrium point (α f , β f ) is reached, where 

 

T 

β ' = Φ  (α  M ) and

 α ' = Φ ( 

 

β " = Φ  (α ' M ) and

 α " =Φ ( 

 

β 

' 

β 

'' 

 

M 

M 

 

 

T 

 

) 

 

) 

 

Φ  (F) = G = g1 , g2 , . . . . , gr  , 

 

F = ( f1 , f2 , . . . . , fr ) 

 

Mis correlation matrix 

 

 

1  if f i > 0  

0 (binary)    
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gi =  , f i < 0  

-1 (bipolar)    

previous g i , f i = 0  

Kosko   has proved that this process will  converge  for  any 

correlation matrix M.     
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SC - Bidirectional hetero AM 

■  Addition and Deletion of Pattern Pairs 
 

Given a set of pattern pairs  (Xi , Yi) ,  for  i = 1 , 2, . . . , n and  a set 

 

of correlation matrix M : 

 

− a new pair (X' , Y') can be added or 

 

− an existing pair (Xj , Yj) can be deleted from the memory model. 

 

Addition : add a new  pair (X' , Y') , to existing correlation matrix  M , 
 

them the new correlation matrix Mnew is given by  
 

Mnew 

T T   T T 
 

=  X1  Y1 + X1 Y1  + . . . . + Xn  Yn   + X'  Y' 
 

 

Deletion : subtract the matrix corresponding to an existing pair (Xj , Yj) from 

the correlation matrix M , them the new correlation matrix Mnew is given by 

 

T 

Mnew  = M - ( 
Xj

 Yj  ) 

 

Note : The addition and deletion of information is similar to the functioning 

of the system as a human memory exhibiting learning and forgetfulness. 
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SC - Bidirectional hetero AM 

4.2 Energy Function for BAM 

 

Note : A system that changes with time is a dynamic system. There are two types 

of dynamics in a neural network. During training phase it iteratively update 

weights and during production phase it asymptotically converges to the solution 

patterns. State is a collection of qualitative and qualitative items that characterize 

the system e.g., weights, data flows. The Energy function (or Lyapunov function) 

is a bounded function of the system state that decreases with time and the 

system solution is the minimum energy. 

 

Let a pair (A , B) defines the state of a BAM. 

 

− to store a pattern, the value of the energy function for that pattern 

 

has to occupy a minimum point in the energy landscape. 

 

− also  adding  a  new  patterns  must  not  destroy  the  previously 

 

stored patterns. 

 

The stability of a BAM can be proved by identifying the energy function E 

with each state (A , B) . 

 

− For auto-associative memory : the energy function is 

 

E(A)  = - AM A
T

 

 

− For bidirecional hetero associative memory : the energy function is 

 

E(A, B) = - AM BT ; for a particular case A = B , it corresponds to 

Hopfield auto-associative function. 
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We wish to retrieve the nearest of (Ai , Bi) pair, when any (α , β ) pair is 

presented as initial condition to BAM. The neurons change 

 

their states until a bidirectional stable state (Af , Bf) is reached. Kosko has 

shown that such stable state is reached for any matrix M when it 

corresponds to local minimum of the energy function. Each cycle of 

 

decoding lowers the  energy E if the energy function for any point 
 

(

α , β ) is given by E = α  M β 
T

      
 

If the  energy 

  T 

evaluated using  coordinates of  the  pair 

 

E = Ai M Bi 
 

(Ai , Bi) does not constitute a local minimum, then the point  cannot 
 

be recalled, even 

though one starts with 

α = Ai. Thus Kosko's  encoding 
 

method does not ensure that the stored pairs are at a local minimum. 
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SC - Bidirectional hetero AM 

 

■  Example : Kosko's BAM for Retrieval of Associated Pair 

The working of Kosko's BAM for retrieval of associated pair. 

Start with X3, and hope to retrieve the associated pair Y3 . 
 

Consider N = 3 pattern pairs (A1 , B1 ) , (A2 ,  B2 ) , (A3 , B3 )  given by 
 

A1 =    (  1  0  0  0  0  1  ) B1 =(  1  1  0  0  0  ) 
 

A2 =    (  0  1  1  0  0  0  ) B2 =(  1  0  1  0  0  ) 
 

A3 =    (  0  0  1  0  1  1  ) B3 =(  0  1  1  1  0  ) 
 

Convert these three binary pattern to bipolar form replacing 0s by -1s. 
 

X1 =    (  1 -1 -1 -1 -1  1  ) Y1 =(  1  1 -1 -1 -1  ) 
 

X2 =    ( -1  1  1 -1 -1 -1  ) Y2 =(  1 -1  1 -1 -1  ) 
 

X3 =    ( -1 -1  1 -1  1  1  ) Y3 =( -1  1  1  1 -1  ) 
 

The correlation matrix M is calculated as 6x5 matrix     
 

         1 1 -3 -1 1 
 

         1 -3 1 -1 1 
 

  T T    T 

= 

-1 -1  3  1 -1 
 

 M =  X1  Y1 +  X2 Y2  +  X3  Y3 

-1 -1 -1 1 3 

 

         
 

         -3 1 1 3 1 
 

         -1 3 -1 1 -1 
 

Suppose we start with 

α = X3,  and we hope to retrieve the associated pair 
 

Y3 . The calculations for the retrieval of Y3 yield :     
 

  α M =  ( -1 -1 1 -1 1 1 )  (  M )  =  ( -6 6  6  6 -6 ) 
 

 Φ  (α  M) = β ' =  ( -1 1  1 1 -1 )       
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 β ' M T  =  ( -5 -5 5 -3 7 5 )       
 

Φ (β ' M T) =  ( -1 -1 1 -1 1 1 )  = α '      
 

 α ' M =  ( -1 -1 1 -1 1 1 )  M =  ( -6 6  6  6 -6 )  
 

Φ (α ' M) = β " =  ( -1 1  1 1 1 -1 )      
 

  = β '            
 

This retrieved patern β 

' is same as Y3 .      
 

Hence, 

(α f , β f) = 

(X3 , Y3 ) is correctly recalled, a desired result . 
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SC - Bidirectional hetero AM 

• Example : Incorrect Recall by Kosko's BAM 
 

The Working of incorrect recall by Kosko's BAM. 

 

Start with X2, and hope to retrieve the associated pair Y2 . Consider N 

= 3 pattern pairs (A1 , B1 ) , (A2 , B2 ) , (A3 , B3 ) given by 

 

A1 =  (  1 0 0 1 1 1 0 0 0 ) B1 =  (  1 1 1 0 0 0 0 1 0 ) 

A2 = ( 0 1 1 1 0 0 1 1 1 ) B2 = ( 1 0 0 0 0 0 0 0 1 ) 

A3 = ( 1 0 1 0 1 1 0 1 1 ) B3 = ( 0 1 0 1 0 0 1 0 1 ) 

 

Convert these three binary pattern to bipolar form replacing 0s by -1s. 

 

X1 =  (  1 -1 -1 1  1 1 -1 -1 -1 ) Y1 =  (  1  1  1 -1 -1 -1 -1 1 -1 ) 

X2 = ( -1 1  1  1 -1 -1 1  1 1 ) Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) 

X3 = ( 1 -1 1 -1 1 1 -1 1 1 ) Y3 = ( -1 1 -1 1 -1 -1 1  0  1 ) 

 

The correlation matrix M is calculated as 9 x 9 matrix 
 

T 

Y1 

  T   T   
 

M =  X1 +  X2 Y2 +  X3  Y3   
 

 -1   3   1   1  -1  -1   1   1  -1 
 

 1  -3  -1  -1   1   1  -1  -1   1 
 

 -1  -1  -3 1 -1  -1   1  -3 3 
 

= 

3  -1   1 -3  -1  -1  -3   1  -1 
 

-1   3   1 1 -1  -1   1   1  -1 
 

 -1   3 1  1  -1 -1 1 1 -1 
 

 1  -3 -1  -1   1 1 -1  -1 1 
 

 -1  -1 -3  1  -1 -1 1 -3 3 
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 -1 -1 -3  1  -1 -1 1 -3 3 
 

 

 

(Continued in next slide) 
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SC - Bidirectional hetero AM 

[Continued from previous slide] 

 

Let the pair (X2 , Y2 ) be recalled.      

X2 =  ( -1 1  1  1 -1 -1 1  1  1 ) Y2 =  (  1 -1 -1 -1 -1 -1 -1 -1 1  ) 

Start with α  = X2, and hope to retrieve the associated pair Y2 . 

The calculations for the retrieval of Y2  yield :   

 α M =  (  5  -19 -13  -5  1   1 -5 -13 13  )  

 Φ  (α  M) =  (   1  -1  -1  -1 1 1 -1 -1  1   )   = β ' 

 β ' M T  =  (  -11 11  5   5 -11 -11 11  5   5 )  

Φ (β ' M 
T
) =  (  -1  1   1   1  -1  -1  1  1   1 )  = α ' 

 α ' M =  (  5  -19 -13  -5 1 1 -5 -13 13  )  

 Φ  (α ' M) =  (  1  -1  -1  -1 1 1 -1  -1  1 )  = β " 

 = β '        

 

Here β " = β ' . Hence the cycle terminates with 

 

α F = α '  = ( -1  1   1   1  -1  -1  1   1   1 )   =  X2 

β F = β '  = ( 1  -1  -1  -1  1   1  -1  -1  1 )  ≠  Y2 

 

But β ' is not Y2 . Thus the vector pair (X2 , Y2) is not recalled correctly 

by Kosko's decoding process. 

 

( Continued in next slide ) 
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SC - Bidirectional hetero AM 

[Continued from previous slide] 

 

Check with Energy Function : Compute the energy functions 

 

for the coordinates of pair (X2 , Y2) , the energy E 

   T 
 

 = - X2 M Y2  = -71 
 

       2    
 

for 

the coordinates of pair (α F , β F) , the energy EF = - α F M β FT = 

-75 
 

However,  the  coordinates  of  pair (X2   ,  Y2)  is not  at its  local 
 

minimum can be shown by evaluating the energy  E at a point which 
 

is "one Hamming distance" way from Y2 . To do this consider a point 
 

 ' 

=  (   1  -1  -1  -1 1  -1  -1  -1  1   ) 

  
 

Y2   
 

where the fifth component -1 of Y2  has been changed to 1. Now 
 

  ′ T         
 

E = - X2  M  Y2 = - 73       
 

which is lower than E2 confirming the hypothesis that (X2 , Y2) is not 
 

at its local minimum of E.        
 

Note : The correlation matrix M used by Kosko does not guarantee 
 

that the energy of a training pair is at its local minimum. Therefore ,  a 
 

pair Pi can be recalled if and only if this  pair is at a local minimum 
 

of the energy surface.         
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4.3 Multiple Training Encoding Strategy 

 

Note : (Ref. example in previous section). Kosko extended the unidirectional 

auto-associative to bidirectional associative processes, using correlation matrix 

M = 

Σ 

T 

Yi  computed from the pattern pairs. The system proceeds to 

 

Xi 
 

 

retrieve the nearest pair given any pair (α , β ), with the help of recall 

equations. However, Kosko's encoding method does not ensure that the stored 

pairs are at local minimum and hence, results in incorrect recall. 

 

Wang and other's, introduced multiple training encoding strategy which 
 

ensures the correct recall of pattern pairs. This encoding strategy is an 
 

enhancement / generalization of Kosko's encoding strategy. The Wang's 
 

generalized  correlation  matrix is M = Σ  qi 

T 

Yi where qi is viewed 

 

Xi  
 

as  pair weight 

 

for 

T 

Y i as positive real numbers. It denotes the 

 

 Xi 
 

minimum number of times for using a pattern pair  (Xi , Yi) for training to 
 

guarantee recall of that pair.            
 

To recover a pair (Ai  , Bi) using multiple training of order q, let us 
 

augment or supplement matrix M with a matrix P defined as  
 

  T 

Yi where (Xi , Yi) are the bipolar form of 

   
 

P = (q – 1) Xi (Ai , Bi). 
 

 

The augmentation implies adding (q - 1) more pairs located at (Ai , Bi) to 

the existing correlation matrix. As a result the energy E' can reduced to an 

arbitrarily low value by a suitable choice of q. This also ensures that the 
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energy at (Ai , Bi) does not exceed at points which are one Hamming 

distance away from this location. 

 

The new value of the energy function E evaluated at (Ai , Bi) then becomes 

 

 T  T T  

E' (Ai , Bi) = – Ai M Bi – (q – 1) Ai Xi Yi  Bi  

The next   few   slides explains the step-by-step implementation of 

Multiple training encoding strategy for the recall of three pattern pairs 

(X1 ,  Y1 ) , (X1 ,  Y1 ) , (X1 , Y1 ) using one and same augmentation matrix 

M . Also an algorithm  to summarize the complete process of  multiple 

 

training encoding is given. 
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SC -  Bidirectional hetero AM 

■  Example : Multiple Training Encoding Strategy 
 

The working of multiple training encoding strategy which ensures the 

correct recall of pattern pairs. 

 

Consider N = 3 pattern pairs (A1 ,  B1 ) , (A2 ,  B2 ) , (A3 ,  B3 )  given by 

 

A1 =  (  1 0 0 1 1 1 0 0 0 ) B1 =  (  1 1 1 0 0 0 0 1 0 ) 

A2 = ( 0 1 1 1 0 0 1 1 1 ) B2 = ( 1 0 0 0 0 0 0 0 1 ) 

A3 = ( 1 0 1 0 1 1 0 1 1 ) B3 = ( 0 1 0 1 0 0 1 0 1 ) 

 

Convert these three binary pattern to bipolar form replacing 0s by -1s. 

X1 =  (  1 -1 -1 1  1 1 -1 -1 -1 )    Y1 =  (  1  1  1 -1 -1 -1 -1 1 -1 ) 

X2 =  ( -1 1  1  1 -1 -1 1  1  1  )    Y2 =  (  1 -1 -1 -1 -1 -1 -1 -1 1  ) 

X3 =  (  1 -1 1 -1 1 1 -1 1  1  )    Y3 =  ( -1 1 -1 1 -1 -1 1  0  1  ) 

Let the pair (X2 , Y2) be recalled.      

X2 =  ( -1 1  1  1 -1 -1 1  1  1  )    Y2 =  (  1 -1 -1 -1 -1 -1 -1 -1 1  ) 

     T 

Y2 , the augmented correlation matrix M Choose q=2, so that P = X2 

becomes 

 T 

Y1 

  T 

Y2 + 

 T 

M = X1 +2X2 X3  Y3 

   4 2 2  0  0  2 2  -2 

  2 -4  -2  -2  0 0  -2  -2   2 

 

= 

0 -2  -4   0  -2  -2   0  -4   4 

 4  -2   0  -4  -2  -2  -4   0   0 

  -2   4   2   2  0 0   2   2  -2 

  -2   4   2   2  0 0   2   2  -2 
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  2 -4  -2 -2  0 0 -2 -2   2 

  0 -2  -4 0 -2  -2 0 -4   4 

  0 -2  -4 0 -2  -2 0 -4   4 

 

 

( Continued in next slide ) 
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SC - Bidirectional hetero AM 

[Continued from previous slide] 

 

Now 

give 

α = X2, and see that the corresponding pattern pair β = Y2 

is correctly recalled as shown below.       

  α M =  ( 14 -28 -22 -14 -8 -8  -14 -22 22  )    

 Φ (α  M) =  (   1  -1  -1  -1  -1  -1  -1  -1  1 )   = β '   

  

β ' M 
T

 =  ( -16 16  18 18 -16 -16 16  18 18  )    

Φ (β ' M 
T
) =  (  -1  1   1   1  -1  -1  1  1   1 )  = α '   

  α ' M =  (  14 -28 -22 -14  -8  -8  -14 -22 23  )    

Φ (α ' M) =  (  1  -1  -1  -1  1   1  -1  -1  1 )  = 

β 

"   

Here  
β " 

= β ' . Hence the cycle terminates with      

  α F = α '  = (  -1  1   1   1  -1  -1  1 1   1   )   =  X2 

  β F = β '  = (   1  -1  -1  -1  1   1  -1  -1  1   ) = Y2 

Thus,  (X2 ,  Y2 ) is correctly recalled, using augmented correlation 

matrix M . But, it is not possible to recall (X1 , Y1)  using the same 

matrix M as shown in the next slide.        

 

( Continued in next slide ) 
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[Continued from previous slide] 

 

Note : The previous slide showed that the pattern pair (X2 , Y2 ) is 

correctly recalled, using augmented correlation matrix 

 

T T T 

M = X1  Y1  + 2  X2  Y2  +  X3  Y3 

 

but  then the same  matrix M can not recall correctly the other 

pattern pair (X1 , Y1 ) as shown below.         

X1 =  (  1 -1 -1 1  1  1 -1 -1 -1 ) Y1 =  (  1  1  1 -1 -1 -1 -1 1 -1 ) 

Let α = X1 and to retrieve the associated pair Y1  the calculation shows 

  α M =  (  -6  24  22  6   4   4   6  22 -22  )    

 
Φ (α  M) =  (  -1  1   1 1  1 1   1  1 -1   )   = β '   

  

β ' M 
T

 = (  16 -16 -18 -18 16 16 -16 -18 -18 )    

Φ (β ' M 
T
) =  (  1  -1  -1  -1  1   1  -1  -1  -1  )  = α '   

  
α ' M 

= (  -14 28  22  14 8 8 14 22 -22 )    

 Φ (α ' M) =  (  -1  1   1 1  1 1 1  1 -1  )  = 

β 

"   

Here 

β " = 

β ' . Hence the cycle terminates with      

  α F = α '  = (   1 -1  -1  -1  1  1 -1  -1  -1   )   =  X1 

  β F = β '  = (  -1  1  1 1 1  1 1  1  -1  ) ≠ Y1 

 

Thus, the pattern pair (X1 , Y1 ) is not correctly recalled, using augmented 

correlation matrix M. 
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To tackle this problem, the correlation matrix M needs to be further 

augmented by multiple training of (X1 , Y1 ) as shown in the next slide. 

 

( Continued in next slide ) 
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[Continued from previous slide] 

 

The previous slide shows that pattern pair (X1 , Y1) cannot be recalled 

under the same augmentation matrix M that is able to recall (X2 , Y2). 

 

However, this problem can be solved by multiple training  of  (X1 , Y1) 
 

which yields a further change in M to values by defining 
 

 T   T    T    
 

M = 2 X1 Y1 + 2 X2 Y2  +  X3 Y3   
 

  -1 5 3 1  -1  -1  1 3 -3 
 

  1 -5  -3  -1  1 1  -1  -3 3 
 

  -1  -3  -5 1  -1  -1  1 -5 5 
 

= 

 5 -1 1  -5  -3  -3  -5 1  -1 
 

 -1 5 3 1  -1  -1  1 3 -3 
 

  -1 5 3 1  -1  -1  1 3 -3 
 

  1 -5  -3  -1  1 1  -1  -3 3 
 

  -1  -3  -5 1  -1 -1  1 -5 5 
 

  -1  -3  -5 1  -1 -1  1 -5 5 
 

 

 

Now observe in the next slide that all three pairs can be correctly recalled. 

 

( Continued in next slide ) 
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                                          SC - Bidirectional hetero AM 
 

[ Continued from previous slide ]                            
 

                                                       
 

Recall of pattern pair  (X1 , Y1 )                            
 

 X1 = ( 1 -1 -1 1    
1 1 -1 -1 -1 )   Y1 = ( 1 1 1 -1 -1 -1 -1 1 -1 )  

 

Let α = X1  and to retrieve the associated pair Y1  the calculation shows  
 

     α  M  =  (  3   33  31  -3  -5  -5  -3  31  -31  )            
 

  Φ  
(α  

M)  =  (  1   1  1  -1  -1  -1  -1  1  -1  )  = β '    
 

  (

β ' M 
T 

) 

 

= 

 

( 

 

13 

  

-13 

 

-19 

 

23 

  

13 

 

13 

 

-13 

 

-19 

 

-19 

 

) 

           
 

                            
 

 

Φ 
(β 

' M 
T 

) 

 

= 

 

( 

 

1 

  

-1 

 

-1 

 

1 

 

1 

 

1 

 

-1 

 

-1 

 

-1 

 

) 

 

= α ' 

     
 

                     
 

     α ' M  =  (  3   33  31  -3  -5  -5  -3  31  -31  )            
 

  
Φ 

(α ' 

M)  =  (  1   1  1  -1  -1  -1  -1  1  -1  )  = β "    
 

Here β " = β ' . Hence the cycle terminates with                      
 

      
α 

F  = α ' =  (  1  -1  -1  1  1  1  -1  -1  -1 ) = X1  
 

      
β 

F  = β ' =  (  1  1  1  -1  -1  -1  -1  1  -1 ) = Y1  
 

Thus, the pattern pair (X1 ,  Y1 ) is correctly recalled  
 

                                                       
 

                                   
 

Recall of pattern pair  (X2 ,  Y2 )                            
 

 X2 = ( -1 1 1 1 -1  -1 1 1 1 )   Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 )  
 

Let α = X2  and to retrieve the associated pair Y2  the calculation shows  
 

     α  M  =  (  7  -35  -29  -7  -1  -1  -7  -29  29  )            
 

  Φ  
(α  

M)  =  (  1   -1  -1  -1  -1  -1  -1  -1  1  )  = β '    
 

  (

β ' M 

T 

) 

 

= 

 

( 

 

-15 

  

15 

 

17 

 

19 

  

-15 

 

-15 

 

15 

 

17 

 

17 

 

) 

           
 

                            
 

 

Φ 
(β 

' M 
T 

) 

 

= 

 

( 

 

-1 

 

1 

 

1 

 

1 

 

-1 

 

-1 

 

1 

 

1 

 

1 

 

) 

 

= α ' 

     
 

                    
 

     α ' M  =  (  7  -35  -29  -7  -1  -1  -7  -29  29  )            
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Φ 

(α ' 

M)  =  (  1   -1  -1  -1  -1  -1  -1  -1  1  )  = β "    
 

Here β " = β ' . Hence the cycle terminates with                      
 

      
α 

F  = α ' =  (  -1  1  1  1  -1  -1  1  1  1 ) = X2  
 

      
β 

F  = β ' =  (  1  -1  -1  -1  -1  -1  -1  -1  1 ) = Y2  
 

Thus, the pattern pair (X2 ,  Y2 ) is correctly recalled  
 

                                 
 

                                 
 

Recall of pattern pair  (X3 ,  Y3 )                            
 

 X3 = ( 1 -1 1 -1 1  1 -1 1 1 )   Y3 = ( -1 1 -1 1 -1 -1 1 0 1 )  
 

Let α = X3  and to retrieve the associated pair Y3  the calculation shows  
 

     α  M  =  (  -13  17  -1  13  -5  -5  13  -1  1  )            
 

  Φ  
(α  

M)  =  (  -1  1  -1  1  -1  -1  1  -1  1  )  = β '    
 

  (

β ' M 
T 

) 

 

= 

 

( 

 

11 

  

-11 

 

27 

 

-63 

  

11 

 

11 

 

-11 

 

27 

 

27 

 

) 

           
 

                            
 

 

Φ 
(β 

' M 
T 

) 

 

= 

 

( 

 

1 

 

-1 

 

1 

 

-1 

 

1 

 

1 

 

-1 

 

1 

 

1 

 

) 

 

= α ' 

     
 

                    
 

     α ' M  =  (  -13  17  -1  13  -5  -5  13  -1  1  )            
 

  
Φ 

(α ' 

M)  =  (  -1  1  -1  1  -1  -1  1  -1  1  )  = β "    
 

Here β " = β ' . Hence the cycle terminates with                      
 

      
α 

F  = α '  =  (  1   -1  1  -1  1  1  -1  1  1 ) = X3  
 

      
β 

F  = β '  =  (  -1  1  -1  1  -1  -1  1  0  1 ) = Y3  
 

Thus, the pattern pair (X3 ,  Y3 ) is correctly recalled  
 

 

( Continued in next slide ) 
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[Continued from previous slide] 

 

Thus, the multiple training encoding strategy ensures the correct of a 

pair for a suitable augmentation of M . The generalization of correlation 

matrix, for the correct recall of all training pairs, is written 

 

 

recall 

 

the 

 

as 

 

 

M = 

 

N

Σ 

 

 

qi 

 
 

T 

Xi 

 

 

Yi 

 

 

where 

 

 

qi 's 

 

 

are +ve 

 

 

real numbers. 

 

i=1 

 

This modified correlation matrix is called generalized correlation matrix. 

Using one and same augmentation matrix M, it is possible to recall all the 

training pattern pairs . 
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• Algorithm (for the Multiple training encoding strategy) 
 

To summarize the complete process of multiple training encoding an 

algorithm is given below. 

 

Algorithm Mul_Tr_Encode ( N ,  Xi ,  Yi , qi  ) where 

 

■  : Number of stored patterns set 

X,i 

 

X = 

 

Y = 

■  :
 

 
 
 

Yi            
 

: the bipolar pattern pairs         
 

( X1 , X2, . . . . , XN) where Xi = ( 

x i 

1 
,
x i 2 

x 

) 

 

 , . . .  i n 
 

( Y1 , Y2, . . . . , YN) where Yj = ( x j 1 , x j 2 , . . .x j n ) 
 

is the weight vector (q1 , q2 , . . . . , qN )     
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Step 1 Initialize correlation matrix M to null matrix M ←   [0] 

Step 2 Compute the correlation matrix M as   

 For 

i 

← 1 to N       

 
M 

← M ⊕ [ qi ∗  Transpose ( Xi ) ⊗ (  Xi ) end 

 (symbols ⊕ matrix addition, ⊗ matrix multiplication, and 

    ∗ scalar multiplication)    

Step 3 Read input bipolar pattern  A     

Step 4 Compute A_M where  A_M  ←  A  ⊗ M  

Step 5 Apply threshold function 
Φ to A_M to get B' 

 ie B' ← 

Φ  ( A_M 

)       

 where Φ is defined as Φ (F) = G = g1 , g2, . . . . , gn 

Step 6 Output B' is the associated pattern pair  

end            

 

 

Adaptive Resonance Theory (ART) 

 

What is ART ? 

 

f ART stands for "Adaptive Resonance Theory", invented by Stephen 

Grossberg in 1976. ART represents a family of neural networks. 
 

g ART encompasses a wide variety of  neural networks. 
 

The basic ART System is an unsupervised learning model. 
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h The term "resonance" refers to resonant state of a neural network in 
 

which a category prototype vector matches close enough to the current 

input vector. ART matching leads to this resonant state, which permits 

learning. The network learns only in its resonant state. 

 

• ART neural networks are capable of developing stable clusters of arbitrary 

sequences of input patterns by self-organizing. 
 

ART-1 can cluster binary input vectors. ART-2 

can cluster real-valued input vectors. 

 

• ART systems are well suited to problems that require online learning of 

large and evolving databases. 

 

 

1. Adaptive Resonance Theory (ART) 

 

Real world  is  faced  with  a  situations  where  data  is  continuously changing. 

 

In such situation, every learning system faces plasticity-stability dilemma. 

 

This dilemma is about : 

 

"A system that must be able to learn to adapt to a changing environment 

(ie it must be plastic) but the constant change can make the system 

unstable, because the system may learn new information only by 

forgetting every thing it has so far learned." 

 

This phenomenon, a contradiction between plasticity and stability, is called 

plasticity - stability dilemma. 
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The back-propagation algorithm suffer from such stability problem. 

 

• Adaptive  Resonance  Theory  (ART)  is  a  new  type  of  neural  network, 
 

designed by Grossberg in 1976 to solve plasticity-stability dilemma. 

 

• ART has a self regulating control structure that allows autonomous 

recognition and learning. 
 

• ART requires no supervisory control  or algorithmic implementation. 
 

 

 

• Recap ( Supervised , Unsupervised and BackProp Algorithms )  

 

Neural networks learn through supervised and unsupervised means. 

 

The hybrid approaches are becoming increasingly common as well. 

 

• In supervised learning, the input and the expected output of the system 

are provided, and the ANN is used to model the relationship between the 

two. Given an input set x, and a corresponding output 
 

set y, an optimal rule is determined such that: y = f(x) + e where, e is an 

approximation error that needs to be minimized. Supervised learning is 

useful when we want the network to reproduce the characteristics of a 

certain relationship. 

 

• In unsupervised learning, the data and a cost function are provided. The 

ANN is trained to minimize the cost function by finding a suitable 
 

input-output relationship. Given an input set x, and a cost function g(x, y) 

of the input and output sets, the goal is to minimize the cost function 

through a proper selection of f (the relationship between x, and y). At each 
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training iteration, the trainer provides the input to the network, and the 

network produces a result. This result is put into the cost function, and the 

total cost is used to update the weights. Weights are continually updated 

until the system output produces a minimal cost. Unsupervised learning is 

useful in situations where a cost function is known, but a data set is not 

know that minimizes that cost function over a particular input space. 

 

 

• In backprop network learning, a set of input-output pairs are given and 

the network is able to learn an appropriate mapping. Among the 
 

supervised learning, BPN is most used and well known for its ability to 

attack problems which we can not solve explicitly. However there are 

several technical problems with back-propagation type algorithms. 

 

They are not well suited for tasks where input space changes and are 

often slow to  learn,  particularly  with  many  hidden  units.  Also  the 

semantics of the algorithm are poorly understood and not biologically 

plausible, restricting its usefulness as a model of neural learning. 

Most learning in brains is completely unsupervised. 

 

05 



186 
 

SC – ART-Competitive learning 

■  Competitive Learning Neural Networks 
 

While no information is available about desired outputs the network 

updated weights only on the basis of input patterns. The Competitive 

Learning network is unsupervised learning for categorizing inputs. The 

neurons (or units) compete to fire for particular inputs and then learn to 

respond better for the inputs that activated them by adjusting their 

weights.  

 

 

 

– For an output unit j , the input vector X = [x1 , x2 , x3 ] 
T
 and  the 

 

weight vector Wj = [w1j , w1j , w1j ] 
T
  are normalized to unit length. 

 

– The activation value aj of the output unit j is calculated by the inner 

product of the weight vectors 

 

a j 

 

= 

Σ3 

 

 

xi 

 

 

wij 

 

 

= XT Wj 

 

 

= Wj 

 

 

XT 

 

i=1 

 

and then the output unit with the highest activation is selected for 

further processing; this implied competitive. 

 

– Assuming that output unit k has the maximal activation, the weights 

leading to this unit are updated according to the competitive, called 

 

winner-take-all (WTA) learning rule 

 

wk (t) + η {x (t) + wk (t)} 

wk
 
(t +

 
1)

 
=

 ||wk (t) + η {x (t) + wk (t)}|| 



187 
 

 

 

which is normalized to ensure that wk (t + 1) is always of unit length; 

only the weights at the winner output unit k are updated and all other 

weights remain unchanged. 

 

– Alternately, Euclidean distance as a dissimilarity measure is a more 

general scheme of competitive learning, in which the activation of output 

unit j is as 

aj  = { Σ
3 (xi - wij )2 }1/2  = || xi - wij  || 

i=1 

 

the weights of the output units with the smallest activation are 

updated according to 

 

wk (t + 1) = wk (t) + η {x (t) + wk (t)} 

 

A competitive network, on the input patterns, performs an on-line 

clustering process and when complete the input data are divided into 

disjoint clusters such that similarity between individuals in the same 

cluster are larger than those in different clusters. Stated above, two 

metrics of similarity measures: one is Inner product and the other 

Euclidean distance. Other metrics of similarity measures can be used. The 

selection of different metrics lead to different clustering. 
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Limitations of Competitive Learning : 

 

– Competitive learning lacks the capability to add new clusters when deemed 

necessary. 

 

– Competitive learning does not guarantee stability in forming clusters. 

 

 If the learning rate  η is constant, then the winning unit that 
 

responds to a pattern may continue changing during training. 

 

■ If the learning rate η is decreasing with time, it may become too 

small to update cluster centers when new data of different 

probability are presented. 

 

Carpenter and Grossberg (1998) referred such occurrence as the stability-

plasticity dilemma which is common in designing intelligent learning 

systems. In general, a learning system should be plastic, or adaptive in 

reacting to changing environments, and should be stable to preserve 

knowledge acquired previously. 

 

• Stability-Plasticity Dilemma (SPD) 
 

Every learning system faces the plasticity-stability dilemma. 

 

The plasticity-stability dilemma poses few questions : 

 

− How  can  we  continue  to  quickly  learn  new  things  about  the 

 

environment and yet not forgetting what we have already learned? 

 

− How can a learning system remain plastic (adaptive) in response to 

 



189 
 

significant input yet stable in response to irrelevant input? 

 

− How can a neural network can remain plastic enough to learn new 

patterns and yet be able to maintain the stability of the already learned 

patterns? 

 

− How does the system know to switch between its plastic and stable 

modes. 

 

− What is the method by which the system can retain previously learned 

information while learning new things. 

 

Answer to these questions, about plasticity-stability dilemma in learning 

systems is the Grossberg’s Adaptive Resonance Theory (ART). 

 

− ART has been developed to avoid stability-plasticity dilemma in 

competitive networks learning. 

 

− The stability-plasticity dilemma addresses how a learning system can 

preserve its previously learned knowledge while keeping its ability to 

learn new patterns. 

 

− ART is a family of different neural architectures. ART architecture can 

self-organize in real time producing stable recognition while getting 

input patterns beyond those originally stored. 
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SC - ART networks 

2. Adaptive Resonance Theory (ART) Networks 

 

An adaptive clustering technique was developed by Carpenter and Grossberg in 

1987 and is called the Adaptive Resonance Theory (ART) . 

 

The Adaptive Resonance Theory (ART) networks are self-organizing competitive 

neural network. ART includes a wide variety of neural networks. ART networks 

follow both supervised and unsupervised algorithms. 

− The unsupervised ARTs  named as  ART1, ART2 , ART3, . .  and  are similar 

 

 

to many iterative clustering algorithms where the terms "nearest" and 

"closer" are modified by introducing the concept of "resonance". 

 

Resonance is just a matter of being within a certain threshold of a second 

similarity measure. 

 

 The supervised ART algorithms that are named with the suffix "MAP", as 

ARTMAP. Here the algorithms cluster both the inputs and targets and 

associate two sets of clusters. 
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The basic ART system is unsupervised learning model. It typically consists of 

− a comparison field and a recognition field composed of neurons, − a 

vigilance parameter, and 

 

− a reset module 

 

Each of these are explained in the next slide. 

 

 

Recognition Field 

  Reset F2 
 

   
 

F2 layer 

• • • • 

 
 

  
 

Z   W 
 

   Reset 
 

   Module 
 

 

• • • • 

Vigilance 
 

Comparison Field Parameter 
 

F1 layer   ρ 
 

 

 

 

 

Normalized Input 

 

Fig Basic ART Structure 
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SC - ART networks 

• Comparison field 
 

The comparison field takes an input vector (a one-dimensional array of 

values) and transfers it to its best match in the recognition field. Its best 

match is the single neuron whose set of weights 

 

(weight vector) most closely matches the input vector. 

 

= Recognition field 
 

Each recognition field neuron, outputs a negative signal proportional to 

that neuron's quality of match to the input vector to each of the other 

recognition field neurons and inhibits their output accordingly. In this way 

the recognition field exhibits lateral inhibition, allowing each neuron in it to 

represent a category to which input vectors are classified. 

 

= Vigilance parameter 
 

After  the  input  vector  is  classified,  a  reset  module  compares  the 

 

strength of the recognition match to a vigilance parameter. The vigilance 

parameter has considerable influence on the system: 

 

− Higher vigilance produces highly detailed memories (many, fine-grained 

categories), and 

 

− Lower vigilance results in more general memories (fewer, more-general 

categories). 

 

11 
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SC - ART networks 

• Reset Module 
 

The reset module compares the strength of the recognition match to the 

vigilance parameter. 

 

− If the vigilance threshold is met, then training commences. 

 

− Otherwise,  if  the  match  level  does  not  meet  the  vigilance 

 

 

parameter, then the firing recognition neuron is inhibited until a new 

input vector is applied; 

 

Training commences only upon completion of a search procedure. 

 

In the search procedure, the recognition neurons are disabled one by one 

by the reset function until the vigilance parameter is satisfied by a 

recognition match. 

 

If no committed recognition neuron's match meets the vigilance threshold, 

then an uncommitted neuron is committed and adjusted towards matching 

the input vector. 

 

12 
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SC - ART networks 

2.1 Simple ART Network 

 

ART includes a wide variety of neural networks. ART networks follow both 

supervised and unsupervised algorithms. The unsupervised ARTs as ART1, 

ART2, ART3, . . . . are similar to many iterative clustering algorithms. 

 

 

The simplest ART network is a vector classifier. It accepts as input a 

vector and classifies it into a category depending on the stored pattern it 

most closely resembles. Once a pattern is found, it is modified (trained) to 

resemble the input vector. If the input vector does not match any stored 

pattern within a certain tolerance, then a new category is created by 

storing a new pattern similar to the input vector. Consequently, no stored 

pattern is ever modified unless it matches the input vector within a certain 

tolerance. 

 

This means that an ART network has 

 

− both plasticity and stability; 

 

− new  categories  can  be  formed  when  the  environment  does  not 

 

match any of the stored patterns, and 

 

− the environment cannot change stored patterns unless they are 

sufficiently similar. 

 

13 
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SC - ART networks 

2.2 General ART Architecture 

 

The general structure, of an ART network is shown below. 

 

 

 

Recognition Field 

Reset F2 
 

 
 

F2 layer, STM 

• • 

 

• • 
 

 

New    
 

cluster  LTM   
 

  Adaptive Filter   
 

   

path 

  
 

    

Reset 

 

     
 

   

 

Module 

 

 Expectation  
 

      
 

 

 

• • • • 

Vigilance 
 

Comparison Field Parameter 
 

F1 layer, STM   ρ 
 

 

 

 

   

Normalized Input 

   
 

      
 

      
 

       
 

 
− Bottom-up weights 
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 Fig Simplified ART Architecture 
 

There are two layers of neurons and a reset mechanism. 
 

− F1 layer : an input processing field; also called comparison layer. 
 

 

− F2 layer : the cluster units ; also called competitive layer. 

 

− Reset mechanism : to control the degree of similarity of patterns placed 

on the same cluster; takes decision whether or not to allow cluster unit to 

learn. 

 

There are two sets of connections, each with their own weights, called : 

 

from each unit of layer F1 to all units of layer F2 . 

 

− Top-down weights from each unit of layer F2 to all units of layer F1 . 

 

 

14 
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SC - ART networks 

2.3 Important ART Networks 

 

The ART comes in several varieties. They belong to both unsupervised 

 

and supervised form of learning. 

 

Unsupervised  ARTs  are named as  ART1, ART2 , ART3, . .  and are 

 

similar to many iterative clustering algorithms. 

 

• ART1 model (1987) designed to cluster binary input patterns. 
 

• ART2 model (1987) developed to cluster continuous input patterns. 
 

• ART3 model (1990) is the refinement of these two models. 
 

Supervised ARTs are named with the suffix "MAP", as ARTMAP, that 

combines two slightly modified ART-1 or ART-2 units to form a supervised 

learning model where the first unit takes the input data and the second 

unit takes the correct output data. The algorithms cluster both the inputs 

and targets, and associate the two sets of clusters. Fuzzy ART and Fuzzy 

ARTMAP are generalization using fuzzy logic. 

 

A taxonomy of important ART networks are shown below. 

 

       ART Networks        
 

       Grossberg, 1976        
 

                   
 

                  
 

  Unsupervised ART    
Supervised 

ART     
 

   Learning    Learning     
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 ART1 , ART2  Fuzzy ART  ARTMAP  Fuzzy  Gaussian  
 

             ARTMAP  ARTMAP  
 

 Carpenter &  Carpenter &  Carpenter &  Carpenter &  Williamson,  
 

 

Grossberg, 

 

Grossberg, 

 Grossberg,  

Grossberg, 

 

1992 

 
 

   

etal 1987 

   
 

 

1987 

   

etal 1987 

  

etal 1987 

    
 

            
 

               
 

   Simplified     Simplified      
 

    ART    ARTMAP      
 

   Baraldi &    Baraldi &      
 

   Alpaydin,    Alpaydin,      
 

    1998        1998      
 

    Fig. Important ART Networks     
 

Note : Only  the unsupervised ARTs  are presented  in what  follows  in 
 

 

 

the remaining slides. 
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SC - ART networks 

2.4 Unsupervised ARTs – Discovering  Cluster Structure 

 

Human has ability to learn through classification. Human learn new 

concepts by relating them to existing knowledge and if unable to relate to 

something already known, then creates a new structure. The unsupervised 

ARTs named as ART1, ART2 , ART3, . . represent such human like learning 

ability. 

 

ART is similar to many iterative clustering algorithms where each pattern 

is processed by 

 

■ Finding the "nearest cluster" seed/prototype/template to that pattern 

and then updating that cluster to be "closer" to the pattern; 
 

■ Here the measures "nearest" and "closer" can be defined in different 

ways in n-dimensional Euclidean space or an n-space. 

 

How ART is different from most other clustering algorithms is that it is 

capable of determining number of clusters through adaptation. 

 

■ ART allows a training example to modify an existing cluster only if the 

cluster is sufficiently close to the example (the cluster is said to 

"resonate" with the example); otherwise a new cluster is formed to 

handle the example 
 

■ To determine when a new cluster should be formed, ART uses a vigilance 

parameter as a threshold of similarity between patterns and clusters. 

 

ART networks can "discover" structure in the data by finding how the data 

is clustered. The ART networks are capable of developing stable clusters of 

arbitrary sequences of input patterns by self-organization. 
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Note : For better understanding, in the subsequent sections, first the 

iterative clustering algorithm (a non-neural approach) is presented then 

the ART1 and ART2 neural networks are presented. 
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SC - Iterative clustering 

• Iterative Clustering  - Non Neural Approach 
 

Organizing data into sensible groupings is one of the most fundamental mode 

of understanding and learning. 

 

Clustering is a way to form 'natural groupings' or clusters of patterns. 

Clustering is often called an unsupervised learning. 

 

− cluster analysis is the study of algorithms and methods for grouping, or 

clustering, objects according to measured or perceived intrinsic characteristics 

or similarity. 

 

- Cluster analysis does not use category labels that tag objects with prior 

identifiers, i.e., class labels. 
 

- The absence of category information, distinguishes the clustering 

(unsupervised learning) from the classification or discriminant analysis 

(supervised learning). 
 

- The aim of clustering is exploratory in nature to find structure in data. 
 

 

17 
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SC - Iterative clustering 

- Example : 
 

Three natural groups of data points, that is three natural clusters. 

 

Y 

 

 

• • •   
 

• • • 
 

  

• • • 
 

• • •  • • • 
 

  • • 
 

 

■ ■ 

 

■ ■ ■ ■ 

 

■ ■ ■ 

 

X 

 

 

In clustering, the task is to learn a classification from the data represented 

in an n-dimensional Euclidean space or an n-space. 

 

• the data set is explored to find some intrinsic structures in them; 
 

• no predefined classification of patterns are required; 

 

The K-mean, ISODATA and Vector Quantization techniques are some of the 

decision theoretic approaches for cluster formation among unsupervised 

learning algorithms. 
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(Note : a recap of distance function in n-space is first mentioned and then vector 

quantization clustering is illustrated.) 
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SC - Recap distance functions 

■  Recap : Distance Functions 
 

 Vector Space Operations 
 

Let R denote the field of real numbers. 

 

For  any  non-negative  integer  n,  the  space  of  all  n-tuples  of  real 

 

numbers forms an n-dimensional vector space over R, denotes  Rn. 
 

An element of Rn is written as  X = (x1, x2, …xi…., xn), where xi  is 
 

a real number. Similarly the other element Y = (y1, y2, …yi…., yn) 
 

The vector space operations on R
n

  are defined by   
 

X + Y = (x1 + y1, X2 + y2, . . , xn + yn) and    
 

aX = (ax1, ax2, . . , axn)        
 

The standard inner product, called dot product, on Rn, is given by 
 

X • Y = ∑n
i=1 (x1 y1 + x2 y2 + . . . . + xn yn) is a real number. 

 

The dot product defines a distance function (or metric) on R
n

  by 
 

d(X , Y) = ||X – Y|| = ∑n
 (xi – yi)2

     
 

        i=1       
 

The (interior) angle  θ between x and y is then given by 
 

θ = cos
-1

 ( 

 X • Y   

) 

      
 

           
 

||X|| ||Y|| 

      
 

          
 

 

 

The dot product of X with itself is always non negative, is given by 
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||X || = ∑n
i=1 (xi - xi)2 

 

[Continued in next slide] 
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SC – Recap distance functions 

■ Euclidean Distance 
 

It is also known as Euclidean metric, is the "ordinary" distance 

between two points that one would measure with a ruler. 

 

The Euclidean distance between two points 

 

P = (p1 , p2 , . . pi . . , xn) and 

 

Q = (q1 , q2 , . . qi . . , qn) 

 

in Euclidean n-space , is defined as : 

 

(p1 – q1)2  + (p2 – q2)2 + . . + (pn – qn)2 

 

 

 

■  ∑ ni=1 (pi - qi)
2
 

 

 

Example : Three-dimensional distance 

 

For two 3D points, 

 

P  = (px, py, . . pz) and 

 

Q = (qx, qy, . . qz) 

 

The Euclidean 3-space , is computed as : 
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(px – qx)2  + (py – qy)2 + (pz – qz)2
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SC - Vector quantization 

3.1 Vector Quantization Clustering 

 

The goal is to "discover" structure in the data by finding how the data is 

clustered. One method for doing this is called vector quantization for 

grouping feature vectors into clusters. 

 

The Vector Quantization (VQ) is non-neural approach to dynamic 

allocation of cluster centers. 

 

VQ is a non-neural approach for grouping feature vectors into clusters. 

 

It works by dividing a large set of points (vectors) into groups having 

approximately the same number of points closest to them. Each group is 

represented by its centroid point, as in k-means and some other clustering 

algorithms. 

 

• Algorithm for vector quantization 
 

− To begin with, in VQ no cluster has been allocated; first pattern would 

hold itself as the cluster center. 

 

− When ever a new input vector Xp as pth pattern appears, the Euclidean 

distance d between it and the jth cluster center C j is calculated as 
 

d =  | X 
p
 – C j | =   ΣN

 

1/2 
 

( 

 

p 

– C 

   

)2 

 

X 

 

J i 

 
 

   

i   
 

i=1 

         
 

         
 

          

         
 

 

 

− The cluster closest to the input is determined as 
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j = 1, . . , M 

 

| X p – C k | < | X p – C j | = minimum 

 

j ≠ k 

 

where M is the number of allotted clusters. 

 

− Once the closest cluster k is determined, the distance | X p – C k | 

must be tested for the threshold distance ρ as 

 

◊ | X p – C k | < ρ    pattern assigned to kth  cluster 
 

2. | X p – C k | > ρ a new cluster is allocated to pattern p 

 

− update that cluster centre where the current pattern is assigned 

C x  = (1/Nx )  Σ X 

 

x∈  Sn 

 

where set X represents all patterns coordinates (x , y) allocated to 

that cluster (ie Sn) and N is number of such patterns. 
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SC - Vector quantization 

◊ Example 1 : ( Ref previous slide) 
 

Consider 12 numbers of pattern points in Euclidean space. 

 

Their coordinates (X , Y) are indicated in the table below. 

 

Table Input pattern - coordinates of 12 points  

Points X Y Points X Y 

1 2 3 7 6 4 

2 3 3 8 7 4 

3 2 6 9 2 4 

4 3 6 10 3 4 

5 6 3 11 2 7 

6 7 3 12 3 7 

 

Determine clusters using VQ, assuming the threshold distance = 2.0. 

 

− Take a new pattern, find its distances from all the clusters identified, 

 

− Compare  distances  w.r.t  the  threshold  distance  and  accordingly 

decide cluster allocation to this pattern, 

 

− Update the cluster center to which this new pattern is allocated, 

− Repeat for next pattern. 

 

Computations to form clusters 

 

   Determining cluster closest to input pattern Cluster no 
 

Input Cluster 1 Cluster 2 Cluster 3 assigned to 
 

Pattern Distance  center Distance center Distance center i/p pattern 
 

1, (2,3) 0 (2 , 3)     1 
 

2, (3,3) 1 (2.5 , 3)     1 
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3, (2,6) 3.041381   0 (2 , 6)   2 
 

4, (3,6) 3.041381   1 (2.5 , 6)   2 
 

5, (6,3) 4.5   5.408326  0 (6 , 3) 3 
 

6, (7,3) 5.5   6.264982  1 (6.5 , 3) 3 
 

7, (6,4) 3.640054   4.031128  1.118033 (6.333333, 3 
 

        3.3333)  
 

8, (7,4) 4.609772 

  

4.924428 

 

0.942809 

  
 

   (6.5, 3.5) 3 
 

9, (2,4) 1.11803 (2.33333, 2.06155 

 

4.527692 

 

1 

 

  
 

   3.33333)      
 

10, (3,4) 0.942808 

      
 

 (2.5, 3.5) 2.0615528  3.5355339  1 
 

11, (2,7) 3.5355339 

  

1.1180339 (2.333333, 7.2629195 

 

2 

 

   
 

      6.333333)    
 

12, (3,7) 3.5707142 

  

0.9428089 

    
 

  (2.5, 6.5) 4.9497474  2 
 

          
 

 

The computations illustrated in the above table indicates : 

 

− No of clusters 3 

 

− Cluster centers C1 = (2.5, 3.5) ; C2 = (2.5, 6.5); C3 = ( 6.5, 3.5). 

 

− Clusters Membership S(1) = {P1, P2, P9, P10}; S(2) = {P3, P4, P11, P12}; 

 

S(3) = {P5, P6, P7, P8}; 

 

These results are graphically represented in the next slide 

22 
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SC - Vector quantization 

[Continued from previous slide] 

 

Graphical Representation of Clustering 

 

(Ref - Example -1 in previous slide ) 

 

Y         Results of vector quantization : 
 

8         

Clusters formed 

 
 

7 

 

■ ■ C2 

     
 

     

− Number of input patterns : 12 

 
 

6 

 

■ ■ 

   

C3 

  
 

     

− Threshold distance assumed : 2.0 

 

5 

        
 

           
 

4 

 

■ ■ 

  

■ ■ 

 − No of clusters : 3  
 

       
 

     

− Cluster centers : 

 
 

3  

■ ■ 

  

■ ■ 

  
 

     

C1 = (2.5, 3.5) ; 

 
 

2   

C1 

      
 

           
 

1        X C2 = (2.5, 6.5);  
 

0         C3 = ( 6.5, 3.5).  
 

0 1 2 3 4 5 6 7 8 − Clusters Membership :  
 

 Fig (a) Input pattern for VQ ,  

S(1)= {P1, P2, P9, P10}; 

 
 

  

Threshold distance =2.0 

  
 

      
 

  

Fig Clusters formed 

 S(2) = {P3, P4, P11, P12};  
 

   

S(1) = {P5, P6, P7, P8}; 
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Note : About threshold distance 

 

− large threshold distance may obscure meaningful categories. 

 

− low threshold distance may increase more meaningful categories. 

 

−  See next slide, clusters for threshold distances as 3.5 and 4.5 . 

 

23 



215 
 

SC - Vector quantization 

- Example 2 
 

The input patterns are same as of Example 1. 

 

Determine the clusters, assuming the threshold distance = 3.5 and 

4.5. − follow the same procedure as of Example 1 ; 

 

− do computations to form clusters, assuming 

the threshold distances as 3.5 and 4.5. 

 

− The results are shown below. 

 

 

Y         
 

8         
 

7  ■ ■ C1     
 

6  ■ ■    C2  
 

5         
 

4  

■ ■ 

  

■ ■ 

 
 

     
 

3  

■ ■ 

  

■ ■ 

 
 

     
 

2         
 

1        X 
 

0         
 

0 1 2 3 4 5 6 7 8 
 

 

 

Fig (b) Input pattern for VQ , 

Threshold distance = 3.5 

 

 

 

Y         
 

8         
 

7  ■ ■   
C1 

  
 

6 

 

■ ■ 

    
 

      
 

5         
 

4  

■ ■ 

  

■ ■ 

 
 

     
 

3  ■ ■   ■ ■  
 

2         
 

1        X 
 

0         
 

0 1 2 3 4 5 6 7 8 
 

 

 

Fig (c) Input pattern for VQ , 

Threshold distance = 4.5 
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Fig Clusters formed 

 

− Fig (b) for the threshold distance = 3.5 , two clusters formed. 

 

− Fig (c) for the threshold distance = 4.5 , one cluster formed. 
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SC - ART Clustering 

ƒ  Unsupervised ART Clustering 
 

The taxonomy of important ART networks, the basic ART structure, and the 

general ART architecture have been explained in the previous slides. Here only 

Unsupervised ART (ART1 and ART2) Clustering are presented. 

 

ART1 is a clustering algorithm can learn and recognize binary patterns. Here 

 

– similar data are grouped into cluster 

 

– reorganizes clusters based upon the changes 

 

– creates new cluster when different data is encountered 

 

ART2 is similar 

 

 

to

 ART1, 

 

 

can 

 

 

learn 

 

 

and 

 

 

recognize 

 

 

arbitrary 

 

 

sequences 

 

of analog input 
 

patterns. 

 

 

The ART1 architecture, the model description, the pattern matching cycle, and 

the algorithm - clustering procedure, and a numerical example is presented in 

this section. 
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SC - ART1 architecture 

4.1 ART1 Architecture 

 

The Architecture of ART1 neural network consist of two layers of neurons. 

 

 

   Attentional sub system  Orienting sub 
 

         system 
 

+ Gain 
+

 

Recognition layer F2 - STM 

+ 

 
 

  

m - Neuron 

  
 

     
 

 2 

G2 

       
 

         
 

  Top-Dn R   

wij 

 
 

  

weights 

    
 

  + 

• LTM • 

    
 

     +    
 

   

vji 

  C Bottom-up  
 

      weights  
 

 ―         
 

  

+ 

     ― ρ 
 

 Gain Comparison layer F1 - STM  Reset 
 

+ 1 G1   n - Neuron   

Vigilance 

 

         
 

     

+ 

   parameter 
 

         
 

   Pattern Vector (Pi = 0 or 1)  
 

  IH=1 [ 1 1 0 0 Pi 0 ]  
 

    - - - - - - - - - - - - - - - - - -   
 

  IH=h [ 1 0 0 1 Pi 0 ]  
 

Fig. ART1 Network architecture 
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ATR1 model consists an "Attentional" and an "Orienting" subsystem. 

 

The Attentional sub-system consists of : 

 

− two competitive networks, as  Comparison layer F1  and  Recognition 

 

layer F2, fully connected with top-down and bottom-up weights; 

 

− two control gains, as Gain1  and Gain2. 

 

 

 

 

− Reset layer for controlling the attentional sub-system overall dynamics 

based on vigilance parameter. 

 

− Vigilance  parameter  ρ  determines  the  degree  of  mismatch  to  be 

tolerated  between  the  input  pattern  vectors  and  the  weights 

 

connecting F1 and F2. 

 

The nodes at F2 represent the clusters formed. Once the network 

stabilizes, the top-down weights corresponding to each node in F2 

represent the prototype vector for that node. 
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SC - ART1 Model description 

4.2 ART1 Model Description 

 

The ART1 system consists of two major subsystem, an attentional 

subsystem and an orienting subsystem, described below. The system does 

pattern matching operation during which the network structure tries to 

determine whether the input pattern is among the patterns previously 

stored in the network or not. 

 

• Attentional Subsystem 
 

(a) F1 layer of neurons/nodes called or input layer or comparison layer; 

short term memory (STM). 

 

(b) F2 layer of neurons/nodes called or output layer or recognition layer; 

short term memory (STM). 

 

(c) Gain control unit , Gain1 and Gain2, one for each layer. 

 

(d) Bottom-up connections from F1 to F2 layer ; 

traces of long term memory (LTM). 

 

(e) Top-down connections from F2 to F1 layer; 

traces of long term memory (LTM). 

 

(f) Interconnections among the nodes in each layer are not shown. 

 

(g) Inhibitory connection (-ve weights) from F2 layer to gain control. 

 

(h) Excitatory connection (+ve weights) from gain control to F1 and F2. 

 

• Orienting Subsystem 
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(h) Reset layer for controlling the attentional subsystem overall dynamics. 

 

(i) Inhibitory connection (-ve weights) from F1 layer to Reset node. 

 

(j) Excitatory connection (+ve weights) from Reset node to F2 layer 
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SC - ART1 Model description 

• Comparison F1  and  Recognition F2 layers 
 

The comparison layer F1 receives the binary external input, then F1 passes 

the external input to recognition layer F2 for matching it to a 

 

classification category. The result is passed back to F1 to find : 

 

If the category matches to that of input, then 

 

− If Yes (match) then a new input vector is read and the cycle starts 

again 
 

− If  No  (mismatch)  then  the  orienting  system  inhibits  the  previous 
 

category to get a new category match in F2 layer. 

 

The two gains, control the activities of F1 and F2 layer, respectively. 

 

Processing element x1i  in layer F1 Processing element x2i in layer F2 
 

                
 

             

To other nodes 

  
 

     

To F2 

         
 

            in F2 (WTA)   
 

                  
 

 

From F2 

              
 

               
 

        

 

          

       

To orient 

          

 

vji 

    

From 

    

From 

 

 

         
 

         
 

             
 

         

Gain2 

   

orient 

 

          

Unit x2j 

 
 

             
 

             

 

in F2 

 

  
 

  

G1 

 

Unit x1i 

       

    

G2 
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in F1 

    
 

From 

    
 

      
 

Gain1    

wij 

 
 

   

 

 
 

    
 

      
 

   

 From F1  

 
 

   

To all F1 

 

  

Ii 

 

     
 

     

and G1 

 

      
 

       
 

 

 

1. A processing element X1i in F1 

receives input from three sources: 
 

(a) External input vector Ii, 

 

(b) Gain control signal G1 

 

(c) Internal network input vji made 

of the output from F2 multiplied 

appropriate connections weights. 

 

2. There is no inhibitory input to 

the neuron 
 

3. The output of the neuron is fed 

to the F2 layer as well as the 

orienting sub-system. 

 
 

1. A processing element X2j in F2 

receives input from three sources: 
 

(a) Orienting sub-system, 

 

(b) Gain control signal G2 

 

(c) Internal network input wij made 

of the output from F1 multiplied 

appropriate connections weights. 

 

2. There is no inhibitory input to 

the neuron. 
 

3. The output of the neuron is fed to 

the F1 layer as well as G1 control. 

 

28 

' 



224 
 

SC - ART1 Pattern matching 

4.3 ART1 Pattern Matching Cycle 

 

The ART network structure does pattern matching and tries to determine 

whether an input pattern is among the patterns previously stored in the 

network or not. 

 

Pattern matching consists of : Input pattern presentation, Pattern 

matching attempts, Reset operations, and the Final recognition. The step-

by-step pattern matching operations are described below. 

 

• Fig (a) show the input pattern 

presentation. The sequence of effects are : 
 
 

F2 

            

► Input pattern I presented to 
 

    

= Y 

     
 

        

the units in F1 layer.  A pattern 

 

               
 

               
 

               of  activation  X  is  produced 
 

G1             across F1.     
 

             

 ► Same input pattern I also 

 

            ― 
 

         

   

   

excites the orientation sub- 

 

1 0 1 0 = S 

A 

 

                  
 

F1 

      

= X 

   

system A and gain control G1. 

 

            
 

  

          
 

            
 

            

 

   
 

            + 

► Output pattern S (which is 
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               inhibitory signal) is sent to A. It 
 

                
 

1 0 1 0  = I     cancels the excitatory effect of 
 

Fig (a) Input Pattern         

signal I  so that A remains 

 

               
 

 

inactive. 

 

► Gain control G1 sends an excitatory signal to F1.  The same  signal is 
 

applied to each node in F1 layer. It is known as nonspecific signal. 

 

 

 

► Appearance of X on F1 results an output pattern S. It is sent through 

connections to F2 which receives entire output vector S. 

 

► Net values calculated in the F2 units, as the sum the product of the 

input values and the connection weights. 
 

► Thus, in response to inputs from F1, a pattern of activity Y develops 

across the nodes of F2 which is a competitive layer that performs a 

contrast enhancement on the input signal. 
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SC - ART1 Pattern matching 

 

• Fig (b) show the Pattern Matching Attempts. 

The sequence of operations are : 
 

► Pattern of activity Y results an 

 
 

 F2         = Y    

output U from F2  which is  an 

 

  

0 0 1 0 = U 

   
 

     

inhibitory signal sent to G1. If it 
 

                
 

G1 

              receives any inhibitory signal 
 

              

from F2, it ceases activity. 

 

              
 

             ―  
 

                

► Output  U becomes second 

 

  

1 0 0 0 = S* 

 

A 

 

       
 

 

V = 

     
 

 

1 

  

0 0 
 

0 

   

input pattern for F1 units. Output 

 

     
 

  

= X* 

 
 

     
 

 

F1 

           
 

               

U is transformed to pattern V, by 

 

             

 

  
 

             + 
 

                LTM  traces  on  the  top-down 
 

                

connections from F2 to F1. 

 

  

1 0 1 0 

 

= I 

    
 

           
 

 

Fig (b) Pattern matching 

 

► Activities that develop over the nodes in F1 or F2 layers are the STM 

traces not shown in the fig. 
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• The 2/3 Rule 
 

► Among the three possible sources of input to F1 or F2, only two are 

used at a time. The units on F1 and F2 can become active only if two out of 

the possible three sources of input are active. This feature is called the 2/3 

rule. 
 

► Due to the 2/3 rule, only those F1 nodes receiving signals from both 
 

I and V will remain active. So the pattern that remains on F1 is I ∩ V . 

 

► The Fig shows patterns mismatch and a new activity pattern X* 

develops on F1. As the new output pattern S* is different from the original 

S , the inhibitory signal to A no longer cancels the excitation coming from 

input pattern I. 
 

30 
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SC - ART1 Pattern matching 

 

• Fig (c) show the Reset Operations. 

The sequence of effects are : 
 

F2 

    

= Y 

►  Orientation sub-system A 
 

    

becomes active due to 

 

             
 

             mismatch of patterns on F1.  
 

G1 

          ► Sub-system A sends a non- 
 

                
 

             

specific reset signal to all nodes 

 

          

― 

 
 

                 
 

          

A 

on F2.     
 

F1 

         

► Nodes on F2 responds 

 

         
 

            
 

            
 

       

    

  

according to their present state. 

 

       + 
 

         
 

             If nodes are inactive, nodes do 
 

       

0 

 

 not respond; If nodes are 

 

1 0 1 = I 
 

  Fig (c) Reset       active, nodes become inactive 
 

 

 

and remain for an extended period of time. This sustained inhibition 

prevents the same node winning the competition during the next cycle. 

 

► Since output Y no longer appears, the top-down output and the 

inhibitory signal to G1 also disappears. 
 

31 
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SC - ART1 Pattern matching 

 

• Fig (d) show the final Recognition. 

The sequence of operations are : 
 

F2 

            ► The original  pattern X is 
 

     = Y*      

reinstated on F1 and a new cycle 

 

               
 

               
 

               of pattern matching begins. Thus 
 

G1 

            a new pattern Y* appears on F2. 
 

                    
 

             

 ► The nodes participating in the 

 

            ― 
 

1 0 1 0 

       

original 

 

pattern Y remains 

 

= S   

A 

 
 

            

inactive due to long term effects 

 

            
 

F1 

       

= X 

  
 

            
 

            
 

               

of the reset signal from A. 

  

            

 

   
 

            +  
 

               
 

               ► This cycle of pattern matching 
 

           

 

   

will continue  until a match is 

 

1 0 1 0  = I    
 

   Fig (d) Final          

found,  or  until F2 runs  out  of 
 

               
 

               previously stored patterns. If no 
 

               match is found, the network will 
 

 

 

assign some uncommitted node or nodes on F2 and will begin to learn the 

new pattern. Learning takes through LTM traces (modification of weights). 

This learning process does not start or stop but continue while the pattern 
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matching process takes place. When ever signals are sent over 

connections, the weights associated with those connections are subject to 

modification. 

 

► The  mismatches  do  not  result  in  loss  of  knowledge  or  learning  of 
 

incorrect association because the time required for significant changes in 

weights is very large compared to the time required for a complete 

matching cycle. The connection participating in mismatch are not active 

long enough to effect the associated weights seriously. 

 

► When a match occurs, there is no reset signal and the network settles 

down into a resonate state. During this stable state, connections remain 

active for sufficiently long time so that the weights are strengthened. This 

resonant state can arise only when a pattern match occurs or during 

enlisting of new units on F2 to store an unknown pattern. 
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SC - ART1 Algorithm 

 

4.4 ART1 Algorithm - Clustering Procedure 

 

(Ref: Fig ART1 Architecture, Model and Pattern matching explained before) 

 

• Notations 
 

■ I(X) is input data set ( ) of the form I(X) = { x(1), x(2), . . , x(t) } where 

t represents time or number of vectors. Each x(t) has n elements; 
 

is the 4
th

 vector that has 3 elements . 

 

■ W(t)  = (wij (t))  is  the  Bottom-up  weight  matrix  of  type  n x m  where 

 

i = 1, n ;  j  = 1, m ;  and its each column is a column vector  of  the  form 
 

wj (t) = [(w1j (t) . . . . wij (t) . . . wnj (t)] 
T
,  T is transpose; Example : 

 

Each column is a column vectors of the form 

 Wj=1 Wj=2 

 W11 W12 

W(t) = (wij (t)) =  W21 W22 

 W31 W32 

 

 

V(t) = (vji (t)) is  the  Top-down weight  matrix  of type m x n  where 
 

j  = 1, m; i = 1, n ;  and its each line is a column vector of  the form 
 

vj (t) = [(vj1 (t) . . . . vji (t) . . . vjn (t)] 
T
, T is transpose; Example :  

 

Each line is a column vector of the form    
 

     vj=1  vj=2    
 

 
Example t = 4 , x(4) = {1 0 0} T 
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v(t) = (vji (t)) = 

v11  v12  v13     
 

      
 

      
 

     v21  v22  v23      
 

■ For 

       
 

any two  vectors  u and v belong  to the  same  vector space R, say 
 

u, v ∈ R the notation < u , v > = u · v = u
T
 · v is scalar product; and 

 

u X v = (u1 v1 , . . . ui vi . . un vn ) 
T
  ∈ R , is  piecewise product , that is 

 

 

 

component by component. 

 

■ The u ∧ v ∈ R
n
 means component wise minimum, that is the minimum on 

each pair of components min { ui ; vi } , i = 1, n ;
 

 

■ The 1-norm of vector u is ||u||1  = ||u|| = Σn
  | ui | 

 

i=1 

 

■ The vigilance parameter is real value ρ ∈ (0 , 1), 

The learning rate is real value α ∈ (0 , 1), 
 

33 
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SC - ART1 Algorithm 

 

• Step-by-Step Clustering Procedure 

Input: Feature vectors 

� Feature vectors IH=1 to h , each representing input pattern to layer F1 . 
 

� Vigilance parameter ρ ; select value between 0.3 and 0.5. 
 

Assign values to control gains G1  and G2 

 

 

G1 = 

1 if input IH ≠ 0 and output from F2 layer = 0 
 

 

0 otherwise 

  
 

     
 

 

G2 = 

1 if input IH ≠ 0  
 

 

0 otherwise 

  
 

     
 

Output: Clusters grouped according  to  the  similarity  is  determined 
 

by 

ρ 

. Each neuron at the output layer represents a cluster, and the 
 

top-down (or backward) weights  represents  temp  plates  or  prototype 
 

of the cluster.    
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SC - ART1 Algorithm 

Step - 1 (Initialization) 

 

■ Initially, no input vector I is applied, making the control gains, 

 

G1 = 0, G2 = 0. Set nodes in F1 layer and F2 layer to zero. 

 

 

■ Initialize bottom-up wij (t) and top-down vji (t) weights for time t. 

Weight wij is from neuron i in F1 layer to neuron j in F2 layer; where i 

= 1, n ; j = 1, m ; and weight matrix W(t) = (wij (t)) is of 
 

 type n x m.           
 

 Each column in W(t) is a column vector  wj (t), j = 1, m ; 
 

 wj (t) = [(w1j (t) . . . . wij (t) . . . wnj (t)] 
T
, T is transpose and 

 

 wij = 1/(n+1) where n is the size of input vector;  
 

 Example : If n = 3;  then wij = 1/4    
 

 column vectors   Wj=1 Wj=2      
 

      W11 W12      
 

 W(t) = (wij (t)) = W21 W22      
 

      W31 W32      
 

 The vji is weight from neuron j in F2 layer to neuron i in F1 layer; 
 

 where j = 1, m; i = 1, n ; Weight  matrix V(t) = (vji (t)) is of 
 

 type m x n.           
 

 Each line in V(t) is a column vector vj (t), j = 1, m ;  
 

 vj (t) = [(vj1 (t) . . . . vji (t) . . . vjn (t)] T, T is transpose and vji  = 1 . 
 

 Each line is a column vector vj=1  vj=2    
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v(t) = (vji (t)) = 

 v11  v12  v13      
 

         
 

         
 

       v21 v22  v23      
 

■ 

       

0.3 ≤ ρ  ≤ 0.5 

 
 

Initialize the vigilance  parameter,  usually  
 

■ Learning rate α = 0, 9       
 

 

 

■ Special Rule : Example
 

 

"While indecision, then the winner is second between equal".
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SC - ART1 Algorithm 

Step - 2 (Loop back from step 8) 

 

Repeat steps 3 to 10 for all input vectors  IH  presented to the  F1 

 

layer; that is I(X) = { x(1), x(2), x(3), . . . , x(t), } 

 

Step – 3 (Choose input pattern vector) 

 

Present a randomly chosen input data pattern, in a format as input vector. 

 

Time t =1,      

The  First  the binary input pattern say { 0  0 1 } is  presented  to  the 

network. Then     

– As input I ≠ 0  ,  therefore node  G1 =  1 and  thus  activates 

all nodes in F1.    

 

– Again, as input I ≠ 0  and  from F2 the output X2 = 0  means not 

 

producing  any  output,  therefore  node G2 = 1 and  thus  activates 

 

all nodes in F2, means recognition in F2 is allowed. 
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SC - ART1 Algorithm 

Step - 4 (Compute input for each node in F2)    
 

Compute input y j for each node in F2 layer using :  
 

y j    =  
Σ
n Ii x wij , If  j = 1 , 2 then y j=1  and y j=1  are 

 

 i=1            
 

      W11        W12 
 

      

 

     
 

y j=1  = 

     

W21 
 

y j=2 =  I1  I2 I3 
 

W22 

 

 I1  I2 I3  
 

      

W31 

       

W32 

 

              

             
 

 

 

 

Step – 5 (Select Winning neuron) 

 

Find k , the node in F2,  that has the largest  y k  calculated in step 4. 

  no of nodes 

  in F  

y k = Σ 2 max (y j ) 

j=1 

 

If an Indecision tie is noticed, then follow note stated below. 

 

Else go to step 6. 

 

Note : 

 

Calculated in step 4, y j=1 = 1/4 and y j=2 = 1/4, are equal, means an 

indecision tie then go by some defined special rule. 
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Let us say the winner is the second node between the equals, i.e., k = 2. 

 

Perform vigilance test, for the F2k output neuron , as below: 
 

   < Vk  , X(t) >  Vk T · X(t) 
 

 

r = 

    

= 

    
 

  

||X(t)|| ||X(t)|| 

  
 

      
 

If  r > ρ =  0.3 , means resonance exists and learning starts as : 
 

The input vector x(t) is accepted by F2k=2 . 
 

Go to step 6.        
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SC - ART1 Algorithm 

Step – 6 (Compute activation in F1)  

For the winning node K in F2 in step 5, compute activation in F1 as 

X
*

k  = ( x 
*

1  , x 
*

2 , · · · , x
*

i=n )  where   x
*

i  = vki  x Ii is the 

 

piecewise product component by component and i = 1, 2, . . . , n. ; i.e., 

 

X
*

K = (vk1 I1 , . . , vki Ii . ., vkn In) T 

 

 

Step – 7 (Similarity between activation in F1 and input) 

 

Calculate the similarity between X
*

k and input  IH  using : 
 

                 n       

*  

      
 

             

  Σ  

 

 
X 

 

 

     
 

    

X
*

k 

          i      
 

       

= 

 

  i=1  

               
 

                       
 

                              
 

    

IH 

          

 n 
               

 

                               

              

Σ 

  

Ii 

         
 

                        
 

              

  

i=1 
 

               

                            
 

Example : If      X
*

K=2  = {0 0 1} , IH=1 = {0 0 1} 
 

then similarity    between X
*

k    and input IH    is 
 

    

X
*

K=2 

        

 

Σ
n

   X
*

i 

    
 

                
 

           

= 
    i=1     

= 1 
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IH=1 

        

n 

        

                           
 

                           
 

             

Σ 

  

Ii 

       
 

                        
 

 

i=1 
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SC - ART1 Algorithm 

Step – 8 (Test similarity with vigilance parameter ) 

 

Test the similarity calculated in Step 7 with the vigilance parameter: 

 

      

*      

     
 

   

 X 

      
 

The similarity 

   K=2      

1 is >  
ρ

 

 
 

  

         

= 

 
 

          
 

            
 

    IH=1           
 

It means  the similarity between X
*

K=2   , IH=1   is true. Therefore, 
 

Associate Input  IH=1 with F2 layer node m = k 
 

 

 

(a) Temporarily disable node k by setting its activation to 0 

 

(b) Update top-down weights , vj (t)  of node j = k = 2 , from F2 to F1 

 

vk i (new) = vk i (t) x Ii  where i = 1, 2, . . . , n , 
 

(c) Update bottom-up weights , wj (t)  of node j = k , from F2 to F1 
 

  vk i (new)  
 

wk i (new) = 

 

where i = 1, 2, . . , n 
 

 
 

0.5 + || vk i (new) || 

 

(d) Update weight matrix W(t) and V(t) for next input vector, time t =2 
 

vj=1 vj=2 
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v(t) = v(2) = (vji (2)) = 

v11 v12 v13 
 

   
 

   
 

  v21 v22 v23 
 

     
 

 

Wj=1 Wj=2 

 

 

 W11 W12 

W(t) = W(2) = (wij (t))  = W21 W22 

 W31 W32 

 

 

If done with all input pattern vectors t (1, n) then STOP. 

 

else Repeat step 3 to 8 for next Input pattern 
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SC - ART1 Numerical example 

4.5 ART1 Numerical Example 

 

 

• 

 

 

Example : Classify in even or odd the numbers 

 

 

 

1, 2, 3, 4, 5, 6, 7 

 

 

Input: 

 

The decimal numbers 1, 2, 3, 4, 5, 6, 7 given in the BCD format. 

 

This input data is represented by the set() of the form 

I(X) = { x(1), x(2), x(3), x(4), x(5), x(6), x(7) } where  

Decimal nos BCD format Input vectors x(t) 

1 0 0 1 x(1) = { 0 0 1}T 

2 0 1 0 x(2) = { 0 1 0}T 

3 0 1 1 x(3) = { 0 1 1}T 

4 1 0 0 x(4) = { 1 0 0}T 

5 1 0 1 x(5) = { 1 0 1}T 

6 1 1 0 x(6) = { 1 1 0}T 

7 1 1 1 x(7) = { 1 1 1}T 

 

 

– The variable t is time, here the natural numbers which vary from 

 

1 to 7, is expressed as t = 1 , 7 . 

 

– The x(t) is input vector; t = 1, 7 represents 7 vectors. 
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– Each x(t) has 3 elements, hence input layer F1 contains n= 3 neurons; 

 

– let  class  A1  contains  even numbers  and  A2  contains  odd numbers, 

 

this means , two clusters, therefore output layer F2 contains m = 2 

neurons. 
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SC - ART1 Numerical example 

 

Step - 1 

 
 

(Initialization) 

 

 

■ Initially, no input vector I 

 

G1 = 0, G2 = 0. Set nodes in 

 

 

is applied, making the control gains, 

layer and F2 layer to zero. F1 
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■ Initialize bottom-up wij (t) and top-down vji (t) weights for time t. 

Weight wij is from neuron i in F1 layer to neuron j in F2 layer; 
 

where i = 1, n ; j = 1, m ; and     
 

weight matrix W(t) = (wij (t)) is of type n x m.   
 

Each column in W(t) is a column vector wj (t), j = 1, m ; 
 

wj (t) = [(w1j (t) . . . . wij (t) . . . wnj (t)] 
T
, T is transpose and 

 

wij = 1/(n+1) where n is the size of input vector;   
 

here n = 3; so wij = 1/4       
 

column vectors Wj=1 Wj=2      
 

  W11 W12  1/4 1/4 

where 

 
 

W(t) = (wij (t)) =  W21 W22 = 1/4 1/4 t=1 
 

  W31 W32  1/4 1/4   
 

 

 

The vji is weight from neuron j in F2 layer to neuron i in F1 layer; 
 

where j = 1, m; i = 1, n ;        
 

weight matrix V(t) = (vji (t)) is of type m x n.   
 

Each line in V(t) is a column vector vj (t), j = 1, m ;   
 

vj (t) = [(vj1 (t) . . . . vji (t) . . . vjn (t)] T, T is transpose and vji  = 1 . 
 

Each line is a column vector  vj=1 vj=2     
 

         
 

v(t) = (vji (t)) = 

v11  v12  v13  

= 

1 1 1 

where t=1 

 

   

1 1 1 

 

   
 

   

v21  v22  v23 

   
 

         
 

■
  Initialize 
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the vigilance parameter ρ = 0.3, usually 0.3 ≤ ρ  ≤ 0.5 
 

 

 

■
  Learning rate α  = 0, 9 

 

■ Special Rule : While indecision , then the winner is second between 

equal.
 

 

SC - ART1 Numerical example 

 

Step - 2 

 
 

(Loop back from step 8) 

 

 

Repeat 

 
 

steps 3 

 
 

to 10 

 

 

for all 

 

 

input vectors 

 

 

IH = 1 to h=7 

 

 

presented 

 

 

to 

 

the 
 

F1 layer; that is 

 

I(X) = { x(1), x(2), x(3), x(4), x(5), x(6), x(7) } 

 

 

Step – 3 

 

 

(Choose input pattern vector) 

 

 

Present a randomly chosen input data in B C D format as input vector. 

 

Let us choose the data in natural order, say x(t) = x(1) = { 0 0 1 }T 

 

 

Time t =1, the binary input pattern { 0 0 1 } 

 

 

 

is presented to network. 

 

 

– As 

 

 

input 

 

 

I 

 

 

≠ 0  ,  therefore 

 

 

node 

 

 

G1 

 

 

= 

 

 

1 

 

 

and thus activates 
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all 

 

nodes 

 

in 

 
 

F1. 

 

 

– Again, as input I ≠ 0  and  from F2 the output X2 = 0  means not 

 

producing  any  output,  therefore  node G2 = 1 and  thus  activates 

 

all nodes in F2, means recognition in F2 is allowed. 
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                          SC - ART1 Numerical example 
 

Step - 4 (Compute input for each node in F2)         
 

Compute input y j for each node in F2 layer using :     
 

y j =   
Σ
n  Ii x wij                     

 

    i=1                          
 

             

W11 

            1/4     
 

                               
 

               

= 

           

1/4 

= 1/4 

 
 

y j=1 = 

         

W21 

 

0 0 1 

      

  

I1 I2 I3 

        
 

         

1/4 

 
 

             

W31 

                
 

                             
 

                               
 

             W12             1/4     
 

               

= 

           

1/4 

= 1/4 

 
 

y j=2 = 

         

W22 

  

0 0 1 

     
 

  

I1 I2 I3 

          
 

         

1/4 

 
 

             

W32 

                 

                             
 

                               
 

Step – 5 (Select winning neuron)                  
 

Find k , the node in F2, that has the largest y k  calculated in step 4. 
 

      no of nodes                     
 

      in F                         
 

y k =    Σ 2 max (y j )                   
 

       j=1                         
 

If an indecision tie is noticed, then follow note stated below.   
 

Else go to step 6.                        
 

Note :                                
 

Calculated in step 4,  y j=1 = 1/4 and y j=2 = 1/4, are equal, means an 
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indecision tie. [Go by Remarks mentioned before,  how to deal with the tie].  
 

Let us say the winner is the second node  between the equals, i.e., k = 2. 
 

Perform vigilance test, for the F2k  output neuron , as below:  
 

                     

1 1 1 

 0     
 

   < Vk , X(t) >  Vk T · X(t)    0 1   
 

 

r = 

           

= 

      

= 

       1 
= 

 

= 1 

 
 

                   

n 

      
 

    

||X(t)|| 

 

||X(t)|| 

       

1 

  
 

        

Σ 

 

|X(t)| 

  
 

                           
 

                      i=1         
 

Thus 

r > 

ρ = 0.3 , means resonance exists and learning starts as : 
 

The input vector x(t=1) is accepted by F2k=2 , ie x(1) ∈  A2 cluster. 
 

Go to Step 6.                           
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SC - ART1 Numerical example 

Step – 6 (Compute activation in F1)          
 

For the winning node K in F2 in step 5, compute activation  in F1 as 
 

* =  

( 

  x *  

, x 

*     · · · ,  *  where x
*

i 

= v 

ki  
i is the 

 

  X k    1  2 ,     x i=n )    x I   
 

piecewise product  component  by component and i = 1, 2, . . . , n. ; i.e., 
 

  X
*

K = (vk1 I1 , . . , vki Ii . ., vkn In) T         
 

Accordingly   X
*

K=2   =  {1 1 1} x {0 0 1} = {0 0 1}      
 

Step – 7  (Similarity between activation in F1 and input)    
 

Calculate the similarity between X
*

k and input IH using :  
 

                    n        

* 

               
 

                

  Σ 

    

X 

 

 

              
 

    

X
*

k 

                i               
 

           

= 

  

  i=1  

         

here n = 3 

         
 

                               
 

                                        

    

IH 

            

n 

                    
 

                 

 

                        
 

                                          

                 

Σ 

   

Ii 

                
 

                                      
 

                   

i=1 

                       

                                         
 

Accordingly ,  while     X
*

K=2  = {0 0 1} , IH=1  = {0 0 1}     
 

Similarity   between     X
*

k  and input IH is        
 

    

X
*

K=2 

        

 Σn 

    

 X
*

i 

             
 

                             
 

              

= 

    

i=1 

    

  

= 1 
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IH=1 

           

n 

                  
 

                                    
 

                                     

                                     
 

                    Σ      Ii                 
 

 

i=1 
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SC - ART1 Numerical example 

 

Step – 8 (Test similarity with vigilance parameter ) 

 

Test the similarity calculated in Step 7 with the vigilance parameter: 

 

      

*     

     
 

   

 X 

      
 

The similarity 

   K=2     

1 is 

>  

ρ 

 
 

  

        

= 

  

         
 

           
 

    IH=1       

X
*

K=2   , 

 
 

It means  the similarity between IH=1   is true. Therefore, 
 

Associate Input  IH=1 with F2 layer node m = k = 2 , i.e., Cluster 2 
 

 

 

(a) Temporarily disable node k by setting its activation to 0 
 

(b) Update top-down weights , vj (t)  of node j = k = 2 , from F2 to F1 
 

vk i (new) = vk i (t=1) x Ii where i = 1, 2, . . . , n = 3 , 
 

vk=2 (t=2) 

 

vk=2, i (t=1)  x 

 0 
 

= Ii =   1 1 1   0 
 

    1 
 

 

= 0 0 1  
T
 

 

(c) Update bottom-up weights , wj (t) of node j = k = 2 , from F2 to F1  

 

wk i (new) = 

  vk i (new)   

where i = 1, 2, . . , n = 3 , 

 

    

 

 

  

+ || vk i (new) || 

 

 0.5      
 

wk=2 (t=2)    vk=2, i (t=2)   =  0 0 1  
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= 

        
 

 

0.5 + ||vk=2, i (t=2)|| 

 

0.5 +   0 0 1 

 
 

      
 

 

= 

  

0  0  2/3 

T      
 

         
 

 

 

 

(d) Update weight matrix W(t) and V(t) for next input vector, time t =2 
 

   vj=1 vj=2    
 

     

1 1 1 

 

v(t) = v(2) = (vji (2)) = 

v11 v12  v13  

= 

 

    

0 0 1 

 

    
 

  

v21 v22  v23 

  
 

       
 

         
 

   Wj=1 Wj=2     
 

  W11 W12  1/4  0 
 

W(t) = W(2) = (wij (t)) = W21 W22 = 1/4  0 
 

  W31 W32  1/4  2/3 
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t =2; IH =   I2 = { 0 1 0 } ;            
 

              Wj=1 Wj=2           vj=1 vj=2 
 

           

1/4 

  

0    

              
 

W(t=2) = 

     

v(t=2) = 

  

1 1 1 

  
 

                   
 

1/4 

  

0    

          
 

            
 

           

1/4 

  

2/3 

           0 0 1   
 

             

  

              
 

                           
 

                   1/4              
 

y j=1 = 

             

1/4 

             
 

  

0 1 0 

     

= 1/4 = 

  

0.25 

    
 

      

1/4 

       
 

                                
 

                   0               
 

y j=2 = 

           

0 

              
 

0  1  0 

      

= 0 = 

  

0 

    
 

    

2/3 

       
 

                                
 

Find winning neuron, in node in F2 that has max(y j =1 , m) ;  
 

Assign k = j ; i.e.,  y k =  y j = max(1/4, 0) ;        
 

Decision     y j=1 is  maximum, so K = 1           
 

Do vigilance test ,  for output neuron  F2k=1,        
 

                       

1 1 1 

0            
 

    

V
T

k=1 · X(t=2) 

    1     

1 

      
 

          0     

= 

    
 

  r = 

             

=  

     

= 

    

1 

   
 

||X(t=2)|| 

     

n 

     

1 

   
 

                         
 

             Σ  |X(t=2)| 
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                     i=1             
 

Resonance , since  

r > 

ρ = 0.3 , resonance exists ; So Start learning; 
 

Input vector x(t=2) is accepted by F2k=1 , means x(2) ∈  A1 Cluster. 
 

Compute activation in  F1, for winning node k = 1, piecewise product 
 

component by component             
 

  X
*

K=1 = Vk=1, i  x IH=2, i = (vk1 IH1 , . . vki IHi . , vkn IHn) 
T

 
 

      = {1 1 1}  x {0 1 0} = {  0 1 0  }      
 

Find similarity between X
*

K=1 = {0 1 0} and IH=2 = {0 1 0} as 
 

  

 

 

X
*

K=1 

        Σ
n

  X
*

i 

                  
 

                             
 

          

= 
i=1 

        

= 

 

1 

           
 

                              
 

                                 

    

IH=2 

        

n 
                      

 

                                   

            

Σ IH=2, i 

               
 

                             
 

 

i=1 

 

[Continued in next slide] 
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SC - ART1 Numerical example 

[Continued from previous slide : Time t =2] 

 

Test the similarity calculated with the vigilance parameter: 

 

        

*  

        
 

     

 X 

         
 

 

Similarity 

    K=1    

1 is > ρ 

 

 

   

     

  

= 

 

      
 

           
 

      IH=2      

X
*

K=1 

   
 

It means the similarity between , IH=2 is true. 
 

So Associate input  IH=2   with F2 layer node m = k = 1, i.e., Cluster 1 
 

 

 

(a) Temporarily disable node k = 1  by setting its activation to 0 
 

(b) Update top-down weights, vj (t=2)  of node j = k = 1, from F2 to F1 
 

vk=1, i (new) = vk =1, i (t=2) x IH=2, i where i = 1, 2, . . . , n = 3 , 
 

vk=1, (t=3) = vk=1, i (t=2)  x  IH=2, i = 

0 
 

1 1 1   x   1 
 

    0 
 

 

= 0 1 0 
T

 

 

(c) Update bottom-up weights, wj (t=2) of node j = k = 1, from F1 to F2 
 

wk=1, i (new) = 

 vk =1, i (new) 

where i = 1, 2, . . , n = 3 , 

 

     
 

0.5 + || vk=1, i (new) || 

 

       
 

wk=1, (t=3)   = 

  vk=1, i (t=3)    

= 

 0 1 0  
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+ ||vk=1, i (t=3)|| 0.5 + 0 1 0 

 
 

0.5   
 

= 

  

0  2/3  0 

T      
 

          
 

 

 

(d) Update weight matrix W(t) and V(t) for next input vector, time t =3 
 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(3) = (vji (3)) = 

v11 v12 v13 

= 

 

    

0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0 0  
 

W(t) = W(3) = (wij (3)) =    W21 W22 =   2/3 0  
 

  W31 W32  0 2/3  
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t = 3; IH = I3 = { 0 1 1 } ;      
 

 Wj=1 Wj=2   vj=1vj=2 
 

 

0 0 

     
 

W(t=3) = v(t=3) = 

0 1 0 

 
 

   
 

2/3 0 

    
 

    
 

 

0 2/3 

 0 0 1  
 

      
 

      
 

 

 

0 

 
 

y j=1 = 0 1 1 
2/3

 = 2/3 = 0.666 0 

 

 

 

0 

y j=2 = 0 1 1 
0

 = 2/3 = 0.666 2/3 

 

 

Find winning neuron, in node in F2 that has max(y j =1 , m) ; 

Assign k = j ; i.e., y k = y j = max(2/3, 2/3) ; indecision tie; take 

winner as second; j = K = 2 

Decision K = 2 

 

Do vigilance test ,  for output neuron  F2k=2,    
 

                   0 0 1 0         
 



260 
 

    

V
T

k=2 · X(t=3) 

1   

1 

    
 

        1    

= 0.5 

 
 

  r = 

            

=  

     

= 

     
 

||X(t=3)|| 

  

n 

    

2 

  
 

                  
 

         

Σ  |X(t=3)| 

      
 

                            
 

                   i=1            
 

Resonance , since  

r > 

ρ = 0.3 , resonance exists ; So Start learning; 
 

Input vector x(t=3) is accepted by F2k=2 ,  means x(3) ∈  A2 Cluster. 
 

Compute activation in F1, for winning node k = 2, piecewise product 
 

component by component            
 

  X
*

K=2 = Vk=2, i  x IH=3, i   = (vk1 IH1 , . . vki IHi . , vkn IHn) 
T

 
 

     = {0 0 1}  x {0 1 1} = {  0 0 1  }    
 

Find similarity between  X*
K=2 = {0 1 0} and IH=3 = {0 1 1} as 

 

  

 

 

X
*

K=2 

   

  Σn X
*

i 

             
 

                   
 

       

= 

 i=1 

   

= 1/2 = 0.5 

    
 

              
 

                      

    

IH=3 

     

n 

         
 

                             
 

                             
 

           

Σ IH=3, i 

             
 

                          
 

                                 

             i=1                   
 

[Continued in next slide]              
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SC - ART1 Numerical example 

[Continued from previous slide : Time t =3] 

 

Test the similarity calculated with the vigilance parameter: 

 

        

*  

         
 

     

 X 

          
 

 

Similarity 

    K=1     

0.5 is > ρ 

 

 

   

      

  

= 

 

       
 

            
 

      IH=2       

X
*

K=2 

   
 

It means the similarity between , IH=3 is true. 
 

So Associate input  IH=3    with F2 layer node m = k = 2, i.e., Cluster 2 
 

 

 

(a) Temporarily disable node k = 2  by setting its activation to 0 
 

(b) Update top-down weights, vj (t=3)  of node j = k = 2, from F2 to F1 
 

vk=2, i (new) = vk =2, i (t=3) x IH=3, i where i = 1, 2, . . . , n = 3 , 
 

vk=2, (t=4) = vk=2, i (t=3)  x  IH=3, i = 

0 
 

0 0 1   x   1 
 

    1 
 

 

= 0 0 1 
T

 

 

(c) Update bottom-up weights, wj (t=3) of node j = k = 2, from F1 to F2 
 

wk=2, i (new) = 

 vk =2, i (new) 

where i = 1, 2, . . , n = 3 , 

 

     
 

0.5 + || vk=2, i (new) || 

 

       
 

wk=2, (t=4)   = 

  vk=2, i (t=4)    

= 

 0 0 1  
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+ ||vk=2, i (t=4)|| 0.5 + 0 0 1 

 
 

0.5   
 

= 

  

0  0  2/3 

T      
 

          
 

 

 

(d) Update weight matrix W(t) and V(t) for next input vector, time t =4 
 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(3) = (vji (3)) = 

v11 v12 v13 

= 

 

    

0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0  0 
 

W(t) = W(3) = (wij (3)) =    W21 W22 =   2/3  0 
 

  W31 W32  0  2/3 
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t = 4; IH = I4 = { 1 0 0 } ;              
 

    Wj=1 Wj=2               vj=1 vj=2 
 

    

0   0 

                   
 

W(t=3) = 

     

v(t=3) = 

   

0 

 

1 0 

  
 

               
 

2/3  0 

               
 

               
 

    

0 

  

2/3 

            0  0 1   
 

    

  

                   
 

                       
 

       0                 0   
 

y j=1 = 

    

2/3 

    

y j=2 = 

       

0 

  
 

 1  0  0    = 0   1  0 0    =  0 
 

       0                 2/3  
 

Find winning neuron, in node in F2 that has max(y j =1 , m) ; 
 

Assign k = j for y j = max(0, 0) ; Indecision tie; Analyze both cases 
 

Case 1 : Take winner as first; j = K = 1; Decision K = 1    
 

Do vigilance test , for output neuron F2k=1,           
 

        

0 1 0 

1               
 

V
T

k=1 · X(t=4) 

0  

0 

         
 

    0    

= 

      
 

r = 

      

= 

      

= 

     

0  

   
 

 

||X(t=4)|| 

n 

             
 

        

1 

         
 

   

Σ 

 

|X(t=4)| 

         
 

                      
 

       
r < ρ i=1                   
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Resonance , since = 0.3 , no resonance exists ;    
 

Input vector x(t=4) is not accepted by F2k=1, means x(4) ∉ A1 Cluster. 
 

Put Output O1(t = 4) = 0.                 
 

Case 2 : Take winner as second ; j = K = 2; Decision K = 2  
 

Do vigilance test , for output neuron F2k=2,           
 

        

0 0 1 

1               
 

V
T

k=2 · X(t=4) 

0  

0 

         
 

    0    

= 

      
 

r = 

      

= 

      

= 

     

0 

    
 

 

||X(t=4)|| 

n 

              
 

        

1 

         
 

   

Σ 

 

|X(t=4)| 

         
 

                      
 

       

r < ρ 

i=1                   
 

Resonance , since = 0.3 , no resonance exists ;    
 

Input vector x(t=4) is not accepted by F2k=2, means x(4) ∉ A2 Cluster. 
 

Put Output O2(t = 4) = 0.                 
 

Thus Input vector x(t=4)  is Rejected by F2 layer.    
 

[Continued in next slide]                    
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    SC - ART1 Numerical example 
 

[Continued from previous slide : Time t =4]     
 

Update weight matrix W(t) and V(t) for next input vector, time t =5 
 

W(4) = W(3) ;  V(4) = V(3) ;  O(t = 4)  = { 1   1 }
T

    
 

    vj=1 vj=2    
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0 1 0 

 

V(t) = v(4) = (vji (4)) = 

 v11  v12  v13 

= 

 

   

0 0 1 

 

   
 

   

v21  v22  v23 

 
 

       
 

        
 

   Wj=1 Wj=2     
 

   W11 W12  

0 

 

0 
 

       
 

W(t) = W(4) = (wij (4)) =  W21 W22 = 2/3  0 
 

   W31 W32  

0 2/3 
 

      
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t =5; IH = I5 = { 1 0 1 } ;              
 

             Wj=1 Wj=2              vj=1 vj=2 
 

             

0 

   

0 

                     
 

W(t=5) = 

              

v(t=5) = 

    

0 1 0 

  
 

                      
 

   

2/3  0    

              
 

                 
 

             

0 

   

2/3 

             0 0 1   
 

                

  

                 
 

                                 
 

                 0                 0   
 

y j=1 = 

       

2/3 

    

y j=2 = 

     

0 

  
 

1 0  1      = 0   1  0 1   =  2/3 
 

                 0                 2/3  
 

Find winning neuron, in node in F2 that has  max(y j =1 , m) ;  
 

Assign k = j ; i.e., y k =  y j = max(0, 2/3)            
 

Decision    y j=2 is maximum, so K = 2           
 

Do vigilance test , for output neuron F2k=2,           
 

                      

0 0 1 

1              
 

    

V
T

k=2 · X(t=5) 

    0    

1 

        
 

           1     

= 0.5 

   
 

  r = 

            

=  

       

= 

       
 

||X(t=5)|| 

     

n 

     

2 

    
 

                           
 

             

Σ  |X(t=5)| 

           
 

                                   
 

                    i=1                
 

Resonance , since r > ρ = 0.3 , resonance exists ; So Start learning; 
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Input vector x(t=5) is accepted by F2k=2 , means x(5) ∈  A2 Cluster. 
 

Compute activation in  F1, for winning node k = 2, piecewise product 
 

component by component                
 

  X
*

K=2 = Vk=2, i x IH=5, i  = (vk1 IH1 , . . vki IHi . , vkn IHn) 
T

 
 

      = {0 0 1}  x {1 0 1}  = {  0 0 1  }       
 

Find similarity between X
*

K=2 = {0 0 1}  and IH=5 = {1 0 1} as 
 

  

 

 

X
*

K=2 

       Σ
n

   X
*

i 

                     
 

                               
 

         

= 

i=1 

        

= 

 

1/2 = 0.5 

          
 

                            
 

    

IH=5 

                         

                             
 

           

n 

                         
 

                                     

           

Σ IH=5, i 

                  
 

                               
 

 

i=1 

 

[Continued in next slide] 
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SC - ART1 Numerical example 

[Continued from previous slide : Time t =5] 

 

Test the similarity calculated with the vigilance parameter: 

 

        

*  

         
 

     

 X 

          
 

 

Similarity 

    K=1     

0.5 is > ρ 

 

 

   

      

  

= 

 

       
 

            
 

      IH=2       

X
*

K=2 

   
 

It means the similarity between , IH=5 is true. 
 

So Associate input  IH=5    with F2 layer node m = k = 2, i.e., Cluster 2 
 

 

 

(a) Temporarily disable node k = 2  by setting its activation to 0 
 

(b) Update top-down weights, vj (t=5)  of node j = k = 2, from F2 to F1 
 

vk=2, i (new) = vk =2, i (t=5) x IH=5, i where i = 1, 2, . . . , n = 3 , 
 

vk=2, (t=6) = vk=2, i (t=5)  x  IH=5, i = 

1 
 

0 0 1   x   0 
 

    1 
 

 

= 0 0 1 
T

 

 

(c) Update bottom-up weights, wj (t=5) of node j = k = 2, from F1 to F2 
 

wk=2, i (new) = 

 vk =2, i (new) 

where i = 1, 2, . . , n = 3 , 

 

     
 

0.5 + || vk=2, i (new) || 

 

       
 

wk=2, (t=6)   = 

  vk=2, i (t=6)    

= 

 0 0 1  
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+ ||vk=2, i (t=5)|| 0.5 + 0 0 1 

 
 

0.5   
 

= 

  

0  0  2/3 

T      
 

          
 

 

 

(d) Update weight matrix W(t) and V(t) for next input vector, time t =6 
 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(6) = (vji (6)) = 

v11 v12 v13 

= 

 

    

0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0  0 
 

W(t) = W(6) = (wij (6)) =    W21 W22 =   2/3  0 
 

  W31 W32  0  2/3 
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t =6; IH = I6 = { 1 1 0 } ;              
 

             Wj=1 Wj=2              vj=1 vj=2 
 

             

0 

   

0 

                     
 

W(t=6) = 

              

v(t=6) = 

    

0 1 0 

  
 

                      
 

   

2/3  0    

              
 

                 
 

             

0 

   

2/3 

             0 0 1   
 

                

  

                 
 

                                 
 

                 0                 0   
 

y j=1 = 

       

2/3 

   

y j=2 = 

     

0 

  
 

1 1  0      = 2/3   1  1 0   =  0 
 

                 0                 2/3  
 

Find winning neuron, in node in F2 that has  max(y j =1 , m) ;  
 

Assign k = j ; i.e., y k =  y j = max(2/3 , 0)           
 

Decision    y j=1 is maximum, so K = 1             
 

Do vigilance test , for output neuron  F2k=1,           
 

                      

0 1 0 

1              
 

    

V
T

k=1 · X(t=6) 

    1    

1 

        
 

           0     

= 0.5 

   
 

  r = 

            

=  

      

= 

        
 

||X(t=6)|| 

     

n 

     

2 

    
 

                           
 

             

Σ  |X(t=6)| 

           
 

                                   
 

                    i=1                
 

Resonance , since r > ρ = 0.3 , resonance exists ; So Start learning; 
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Input vector x(t=6) is accepted by F2k=1 , means x(6) ∈  A1 Cluster. 
 

Compute activation in  F1, for winning node k = 1, piecewise product 
 

component by component                
 

  X
*

K=1 = Vk=1, i x IH=6, i  = (vk1 IH1 , . . vki IHi . , vkn IHn) 
T

 
 

      = {0 1 0}  x {1 1 0}  = {  0 1 0  }       
 

Find similarity between X
*

K=1 = {0 1 0} and IH=6  = {1 1 0} as 
 

  

 

 

X
*

K=1 

       Σ
n

   X
*

i 

                     
 

                               
 

         

= 

i=1 

        

= 

 

1/2 = 0.5 

          
 

                            
 

    

IH=6 

                         

                             
 

           

n 

                         
 

                                     

           

Σ IH=5, i 

                  
 

                               
 

 

i=1 

 

[Continued in next slide] 
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SC - ART1 Numerical example 

[Continued from previous slide : Time t =6] 

 

Test the similarity calculated with the vigilance parameter: 

 

      

*  

         
 

   

 X 

          
 

 

Similarity 

  K=1      

0.5 is   > ρ 

 

 

 

      

   

= 

 

       
 

           
 

    IH=6           
 

It means the similarity between X
*

K=1 , IH=6 is true. 
 

So Associate input  IH=6     with F2 layer node m = k = 1, i.e., Cluster 1 
 

 

 

(a) Temporarily disable node k = 1  by setting its activation to 0 
 

(b) Update top-down weights, vj (t=6)  of node j = k = 2, from F2 to F1 
 

vk=1, i (new) = vk =1, i (t=6) x IH=6, i where i = 1, 2, . . . , n = 3 , 
 

vk=1, (t=7) = vk=1, i (t=6)  x  IH=6, i = 

1 
 

0 1 0   x   1 
 

    0 
 

 

= 0 1 0 
T

 

 

(c) Update bottom-up weights, wj (t=2) of node j = k = 1, from F1 to F2 
 

wk=1, i (new) = 

 vk =1, i (new) 

where i = 1, 2, . . , n = 3 , 

 

     
 

0.5 + || vk=1, i (new) || 

 

       
 

wk=1, (t=7)   = 

  vk=1, i (t=7)    

= 

 0 1 0  
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+ ||vk=1, i (t=7)|| 0.5 + 0 1 0 

 
 

0.5   
 

= 

  

0  2/3  0 

T      
 

          
 

 

 

• Update weight matrix W(t) and V(t) for next input vector, time t =7 
 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(7) = (vji (7)) = 

v11 v12 v13 

= 

 

    

0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0  0 
 

W(t) = W(7) = (wij (7)) =    W21 W22 =   2/3  0 
 

  W31 W32  0  2/3 
 

 

 

If done with all input pattern vectors t (1, 7) then stop. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

• Present Next Input Vector and Do Next Iteration (step 3 to 8) 
 

Time t =7; IH = I7 = { 1 1 1 } ;         
 

    Wj=1 Wj=2      vj=1 vj=2 
 

    

0  0 

          
 

W(t=7) = 

   

v(t=7) = 

 

0 1 0 

  
 

         
 

 

2/3 0 

        
 

         
 

    

0 

 

2/3 

   0 0 1   
 

    

 

         
 

             
 

      0       0   
 

y j=1 = 

    

2/3 

 

y j=2 = 

    

0 

  
 

 1 1 1  = 2/3 1 1  1    =  2/3 
 

      0       2/3  
 

Find winning neuron, in node in F2 that has max(y j =1 , m) ;  
 

Assign k = j ; i.e., y k = y j = max(2/3 , 2/3) ; indecision tie;  
 

 

 

take winner as second;  j = K = 2 

 

Decision K = 2 

 

Do vigilance test ,  for output neuron  F2k=1,   
 

                   

0 0 1 

1       
 

    

V
T

k=2 · X(t=7) 

1  

1 

   
 

         1   

= 0.333 

 

  r = 

            

=  

      

= 

   
 

||X(t=7)|| 
   

n 

   

3 
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Σ  |X(t=7)| 

    
 

                           
 

                    i=1         
 

Resonance , since  

r > 

ρ   = 0.3 , resonance exists ; So Start learning; 
 

Input vector x(t=7) is accepted by F2k=2 , means x(7) ∈  A2 Cluster. 
 

Compute activation in F1, for winning node k = 2, piecewise product 
 

component by component         
 

  X
*

K=2 = Vk=2, i  x IH=7, i  = (vk1 IH1 , . . vki IHi . , vkn IHn) 
T

 
 

     = {0 0 1}  x {1 1 1}  = {  0 0 1  }   
 

Find similarity   between   X
*

K=2 = {0 0 1} and IH=7 = {1 1 1}  as 
 

  

 

 

X
*

K=2 

    

 Σn X
*

i 

            
 

                   
 

       

= 

 i=1 

   

= 

 

1/3 = 0.333 

  
 

             
 

                     

    

IH=7 

     

n 

        
 

                            
 

                            
 

           

Σ IH=7, i 

            
 

                         
 

                                

             i=1                  
 

[Continued in next slide]             
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SC - ART1 Numerical example 

[Continued from previous slide : Time t =7] 

 

Test the similarity calculated with the vigilance parameter: 

 

        

*  

         
 

     

 X 

          
 

 

Similarity 

    K=2     

0.333 is > ρ 

 

 

   

      

  

= 

 

       
 

            
 

      IH=7       

X
*

K=2 

   
 

It means the similarity between , IH=7 is true. 
 

So Associate input  IH=7    with F2 layer node m = k = 2, i.e., Cluster 2 
 

 

 

■  Temporarily disable node k = 2  by setting its activation to 0 
 

■  Update top-down weights, vj (t=7)  of node j = k = 2, from F2 to F1 
 

vk=2, i (new) = vk =2, i (t=7) x IH=7, i where i = 1, 2, . . . , n = 3 , 
 

vk=2, (t=8) = vk=2, i (t=7)  x  IH=7, i = 

1 
 

0 0 1   x   1 
 

    1 
 

 

 0 0 1 
T

 

 

■  Update bottom-up weights, wj (t=7) of node j = k = 1, from F1 to F2 
 

wk=2, i (new) = 

 vk =2, i (new) 

where i = 1, 2, . . , n = 3 , 

 

     
 

0.5 + || vk=2, i (new) || 

 

       
 

wk=2, (t=8)   = 

  vk=2, i (t=8)    

= 

 0 0 1  
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+ ||vk=2, i (t=8)|| 0.5 + 0 0 1 

 
 

0.5   
 

= 

  

0  0  2/3 

T      
 

          
 

 

 

- Update weight matrix W(t) and V(t) for next input vector, time t =8 
 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(8) = (vji (8)) = 

v11 v12 v13 

= 

 

    

0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0  0 
 

W(t) = W(8) = (wij (8)) =    W21 W22 =   2/3  0 
 

  W31 W32  0  2/3 
 

 

 

If done with all input pattern vectors t (1, 7) then STOP. 

 

else Repeat step 3 to 8 for next input pattern 
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SC - ART1 Numerical example 

[Continued from previous slide] 

 

■  Remarks 
 

The decimal numbers 

format (patterns) have 

as even or odd. 

 

 

 

 

1, 2, 3, 4, 5, 6, 7 given in the BCD 

 

been  classified  into two clusters  (classes) 

 

Cluster Class A1 = { X(t=2), X(t=2) } 

 

Cluster Class A2 = { X(t=1), X(t=3) , X(t=3) , X(t=3) } 

 

The network failed to classify X(t=4) and rejected it. 

 

The network has learned by the : 

 

– Top down weight matrix V(t) and 

 

– Bottom up weight matrix W(t) 

 

These two weight matrices, given below, were arrived after all, 1 to 7, 

patterns were one-by-one input to network that adjusted the weights 

following the algorithm presented. 

 

    vj=1 vj=2    
 

      

0 1 0 

 

V(t) = v(8) = (vji (8)) = v11 v12 v13 = 
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0 0 1 

 

    
 

  

v21 v22 v23 

 
 

      
 

       
 

  Wj=1 Wj=2     
 

  W11 W12  0  0 
 

W(t) = W(8) = (wij (8)) =    W21 W22 =   2/3  0 
 

  W31 W32  0  2/3 
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SC - ART2 

 

4.3 ART2 

 

The Adaptive Resonance Theory (ART) developed by Carpenter and 

Grossberg designed for clustering binary vectors, called ART1 have been 

illustrated in the previous section. 

 

They later developed ART2 for clustering continuous or real valued vectors. 

The capability of recognizing analog patterns is significant enhancement to 

the system. The differences between ART2 and ART1 are : 

■  The modifications needed to accommodate patterns with continuous-

valued components. 
 

■  The F1 field of ART2 is more complex because continuous-valued input 

vectors may be arbitrarily close together. The F1 layer is split into 

several sunlayers. 
 

■  The F1 field in ART2 includes a combination of normalization and noise 

suppression, in addition to the comparison of the bottom-up and top-

down signals needed for the reset mechanism. 
 

■  The orienting subsystem also to accommodate real-valued data. 
 

The learning laws of ART2 are simple though the network is complicated. 

 

59 



281 
 

Fuzzy Set Theory 

 

What is Fuzzy Set ? 

 

■  The word "fuzzy" means "vagueness". Fuzziness occurs when the boundary 

of a piece of information is not clear-cut. 

 

■  Fuzzy sets have been introduced by Lotfi A. Zadeh (1965) as an extension 

of the classical notion of set. 
 

• Classical set theory allows  the  membership  of  the elements  in  the set 

in  binary terms, a  bivalent  condition -  an element either belongs  or 

does not belong to the set.     

Fuzzy  set theory permits  the gradual assessment of the membership 

of elements in a set, described with the aid of a membership function 

valued in the real unit interval [0, 1].     

- Example: 
 

Words like young, tall, good, or high are fuzzy. 

− There is no single quantitative value which defines the term young. 

 

− For some people, age 25 is young, and for others, age 35 is young. 

 

− The concept young has no clean boundary. 

 

− Age 1 is definitely young and age 100 is definitely not young; 

 

− Age 35 has some possibility of being young and usually depends on the 

context in which it is being considered. 
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3. Introduction 
 

In real world, there exists much fuzzy knowledge; 

 

Knowledge that is vague, imprecise, uncertain, ambiguous, inexact, or 

probabilistic in nature. 

 

Human thinking and reasoning frequently involve fuzzy information, originating 

from inherently inexact human concepts. Humans, can give satisfactory 

answers, which are probably true. 

 

However, our systems are unable to answer many questions. The reason is, 

most systems are designed based upon classical set theory and two-valued 

logic which is unable to cope with unreliable and incomplete information and 

give expert opinions. 

 

We want, our systems should also be able to cope with unreliable and 

incomplete information and give expert opinions. Fuzzy sets have been able 

provide solutions to many real world problems. 

 

Fuzzy Set theory is an extension of classical set theory where elements have 

degrees of membership. 
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• Classical Set Theory 
 

A Set is any well defined collection of objects. An object in a set is called 

an element or member of that set. 

 

− Sets are defined by a simple statement describing whether a particular 

element having a certain property belongs to that particular set. 

 

 

−  Classical set theory enumerates all its elements using 

 

A = { a1 , a2 , a3 , a4 , . . . . an } 

 

If the elements 

 

universal set  X, 

 

 

ai (i = 

then 

 

 

1, 2, 3, . . . 

 

set  A  can 

 

 

n) of a set  A are subset of 

 

be represented  for  all elements 

 

x 

∈ 

 
 

X 

 
 

by its 

 
 

characteristic function 

 

1 if x ∈ X 

 

A (x) = 

 otherwise 
 

− A set A is well described by a function called characteristic function. 

 

 

This function, defined on the universal space X, assumes : 

 

a value of 1 for  those  elements x that belong to set A, and 
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- value of 0 for those elements x that do not belong to set A. 

The notations used to express these mathematically are 
 

 : Χ →  [0, 1]  

 

A(x) = 1 , x is a member of A Eq.(1) 

A(x) = 0 , x is not a member of A  

 

 

Alternatively,  the set  A  can be represented  for  all elements 

 

by its characteristic function A(x) defined as 

 

 

x 

∈ 

 

 

X 

 

1 if x 

∈ 

 

 
 

X 

 

A (x) = 
 

Eq.(2) 

 

 otherwise 
 

− Thus in classical set theory A (x) has only the values 0 ('false') and 1 

('true''). Such sets are called crisp sets. 

 

05 
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SC - Fuzzy set theory - Introduction 

■  Fuzzy Set Theory 
 

Fuzzy set theory is an extension of classical set theory where elements 

have varying degrees of membership. A logic based on the two truth 

values, True and False, is sometimes inadequate when describing human 

reasoning. Fuzzy logic uses the whole interval between 0 (false) and 1 

(true) to describe human reasoning. 

 

−  A  Fuzzy Set  is any  set  that  allows  its  members  to  have  different 

degree  of  membership,  called  membership function,  in the interval 

 

[0 , 1]. 

 

−  The degree of membership or truth is not same as probability; 

 

0 fuzzy truth is not likelihood of some event or condition. 
 

1 fuzzy truth represents membership in vaguely defined sets; 

 

− Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is 

approximate rather than precisely deduced from classical predicate logic. 

 

 

−  Fuzzy logic is capable of handling inherently imprecise concepts. 

 

− Fuzzy logic allows in linguistic form the set membership values to 

imprecise concepts like "slightly", "quite" and "very". 

 

−  Fuzzy set theory defines Fuzzy Operators on Fuzzy Sets. 

 

06 
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SC - Fuzzy set theory - Introduction 

• Crisp and Non-Crisp Set 
 

− As said before, in classical set theory, the characteristic function A(x) 

of Eq.(2) has only values 0 ('false') and 1 ('true''). 

 

Such sets are crisp sets. 

 

−  For Non-crisp sets the characteristic function A(x)can be defined. 

 

� The characteristic function A(x) of Eq. (2) for the crisp set is 

generalized for the Non-crisp sets. 
 

� This generalized characteristic function A(x)  of  Eq.(2)  is called 
 

membership function. 

 

Such Non-crisp sets are called Fuzzy Sets. 

 

− Crisp set theory is not capable of representing descriptions and 

classifications in many cases; In fact, Crisp set does not provide 

adequate representation for most cases. 

 

− The proposition of Fuzzy Sets are motivated by the need to capture and 

represent real world data with uncertainty due to imprecise 

measurement. 

 

−  The uncertainties are also caused by vagueness in the language. 

 

07 
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• Representation of Crisp and Non-Crisp Set 
 

Example : Classify students for a basketball team 

This example explains the grade of truth value. 

 

- tall students qualify and not tall students do not qualify 
 

- if students 1.8 m tall are to be qualified, then 
 

should we exclude a student who is 1/10" less? or 

should we exclude a student who is 1" shorter? 

• Non-Crisp Representation to represent the notion of a tall person.
 

 

 

 

Degree or grade of truth  Degree or grade of truth  
 

Not Tall Tall  Not Tall Tall  
 

1   1   
 

0 

1.8 m Height x 

0   
 

  1.8 m Height x 
 

 

Crisp logic Non-crisp logic 

 

Fig. 1 Set Representation – Degree or grade of truth 

 

A student of height 1.79m would belong to both tall and not tall sets 

with a particular degree of membership. 

 

As the height increases the membership grade within the tall set would 

increase whilst the membership grade within the not-tall set would 

decrease. 
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SC - Fuzzy set theory - Introduction 

■  Capturing Uncertainty 
 

Instead of avoiding or ignoring uncertainty, Lotfi Zadeh introduced Fuzzy 

Set theory that captures uncertainty. 

 

■ A fuzzy set is described by a membership function A (x) of A. 

 

This membership function associates to each element xσ 

 

number as A (xσ ) in the closed unit interval [0, 1]. 

 

 

 

∈ 

 

 

 

 

X 

 

 

 

a 

 

 

The number A (xσ  ) represents the degree of membership of xσ 

 

 

in A. 

 

• The notation used for membership function A (x) of a fuzzy set A is
 

 

 : Χ →  [0, 1] 
 

• Each membership function maps elements of a given universal base 
set X , which is itself a crisp set, into real numbers in [0, 1] .

 

 

■ Example 

 

 

 

 

 

c (x) 

 

 

F (x) 

 

1 

C 
 

F 

 

0.5 
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0 

 

 

 

x 

 

 

Fig. 2 Membership function of a Crisp set C and Fuzzy set F 

 

■ In the case of Crisp Sets the members of a set are :
 

 

either out of the set, with membership of degree " 0 

", or in the set, with membership of degree " 1 ", 

 

Therefore, Crisp Sets ⊆ Fuzzy Sets 

 

In other words, Crisp Sets are Special cases of Fuzzy Sets. 

 

[Continued in next slide] 

 

09 
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SC - Fuzzy set theory - Introduction 

■  Examples of Crisp and Non-Crisp Set 
 

Example 1: Set of prime numbers ( a crisp set) 

 

If we consider space X consisting of natural numbers ≤ 12 

 

ie X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

Then, the set of prime numbers could be described as follows. 

 

PRIME = {x contained in X | x is a prime number} = {2, 3, 5, 6, 7, 11} 

 

Example 2: Set of SMALL ( as non-crisp set) 

 

A Set X that consists of SMALL cannot be described; 

 

for example 1 is a member of SMALL and 12 is not a member of SMALL. 

 

Set A, as SMALL, has un-sharp boundaries, can be characterized by a 

function that assigns a real number from the closed interval from 0 to 1 to 

each element x in the set X. 

 

10 
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SC - Fuzzy set theory – Fuzzy Set 

2. Fuzzy Set 

 

A Fuzzy Set is any set that allows its members to have of 

membership, called membership function, in the interval 

 

 

different degree 

[0 , 1]. 

 

• Definition of Fuzzy set 
 

A 

 

in 

 

 

fuzzy set A, defined in the universal space X, 

 

X which assumes values in the range [0, 1]. 

 

 

is a function defined 

 

 

A fuzzy set A is written as a set of pairs 

 

 

{x, A(x)} 

 

 

as 

 

A = {{x , A(x)}} , x in the set X 

 

where x is an element of the universal space X, and 

 

A(x) is the value of the function A for this element. 

 

The value 

 

 

A(x) 

 

 

is 

 

 

the 

 

 

membership

 grade 

 

 

of 

 

 

the 

 

 

element 

 

 

x 

 

 

in 

 

 

a 

 

fuzzy set 
 

A. 

 

 

Example : 

 

 

Set 

 

 

SMALL 

 

 

in set X 

 

 

consisting of natural numbers 

 

 

≤ 

 

 

to 12. 

 

 

Assume: 

 

 

SMALL(1) = 1, SMALL(2) = 1, SMALL(3) = 0.9, SMALL(4) = 0.6, 
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SMALL(5) = 0.4, 

SMALL(6) = 0.3, 

SMALL(7) = 0.2, 

SMALL(8) = 0.1, 

 

SMALL(u) = 0 for u >= 9. 

 

 

Then, following the notations described in the definition above : 

 

Set SMALL = {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {7, 0.2}, 

{8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Note that a fuzzy set can be defined precisely by associating with each x , 

its grade of membership in SMALL. 

 

11 
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SC - Fuzzy set theory – Fuzzy Set 

• Definition of Universal Space 
 

Originally the universal space for fuzzy sets in fuzzy logic was defined only 

on the integers. Now, the universal space for fuzzy sets and fuzzy 

relations is defined with three numbers. 

 

The first two numbers specify the start and end of the universal space, 

and the third argument specifies the increment between elements. This 

gives the user more flexibility in choosing the universal space. 

 

Example : The fuzzy set of numbers, defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

 

12 
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SC - Fuzzy set theory – Fuzzy Membership 

 

2.1 Fuzzy Membership     

A fuzzy set A defined in the universal  space X is a function defined 

in X which assumes values in the range [0, 1].  

A fuzzy set A is written as a set of pairs {x, A(x)}.  

  A = {{x , A(x)}} ,  x in the set X  

  where x is an element of the universal space X, and 

  A(x) is the value of the function A for this element. 

The value A(x)  is the degree of membership  of the  element  x 

in a fuzzy set A.     

 

The Graphic Interpretation of fuzzy membership for the fuzzy sets : Small, 

Prime Numbers, Universal-space, Finite and Infinite UniversalSpace, and 

Empty are illustrated in the next few slides. 

 

13 
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SC - Fuzzy set theory – Fuzzy Membership 

• Graphic Interpretation of Fuzzy Sets SMALL 
 

The fuzzy set  SMALL  of  small  numbers, defined  in the  universal space 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as  

SetOption [FuzzySet, UniversalSpace →  {1, 12, 1}]   

The Set SMALL in set X is :      

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Therefore SetSmall is represented as 

 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

 

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

FuzzyPlot [ SMALL, AxesLable 

→  {"X", "SMALL"}]      

SMALL              

1              

.8              

.6              

.4              

.2              

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

 

 

Fig Graphic Interpretation of Fuzzy Sets SMALL 
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SC - Fuzzy set theory – Fuzzy Membership 

• Graphic Interpretation of Fuzzy Sets  PRIME Numbers 
 

The fuzzy set PRIME numbers, defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

The Set PRIME in set X is : 

 

PRIME = FuzzySet {{1, 0}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0}, {9, 0}, {10, 0}, {11, 1}, 

{12, 0}} 

Therefore SetPrime is represented as 

 

SetPrime = FuzzySet [{{1,0},{2,1}, {3,1}, {4,0}, {5,1},{6,0}, {7,1}, 

 

  {8, 0}, {9, 0}, {10, 0}, {11, 1}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

FuzzyPlot [ PRIME, AxesLable 

→  {"X", "PRIME"}]      

PRIME             

1               

.8               

.6               

.4               

.2               

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

 

 

Fig Graphic Interpretation of Fuzzy Sets PRIME 
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SC - Fuzzy set theory – Fuzzy Membership 

• Graphic Interpretation of Fuzzy Sets  UNIVERSALSPACE 
 

In any application of sets or fuzzy sets theory, all sets are subsets of 

 

i fixed set called universal space or universe of discourse denoted by X. 

Universal space X as a fuzzy set is a function equal to 1 for all elements. 

 

The  fuzzy  set  UNIVERSALSPACE  numbers, defined in  the universal 
 

space X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}  is presented as   
 

SetOption [FuzzySet, UniversalSpace 

→ {1, 12, 1}]           
 

The Set UNIVERSALSPACE in set X is :              
 

UNIVERSALSPACE = FuzzySet {{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}, {6, 1},    
 

           {7, 1}, {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}}  
 

Therefore SetUniversal is represented as              
 

SetUniversal = FuzzySet [{{1,1},{2,1}, {3,1}, {4,1}, {5,1},{6,1}, {7,1},   
 

 {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}} , UniversalSpace → {1, 12, 1}]  
 

FuzzyPlot [ UNIVERSALSPACE, AxesLable → {"X", " UNIVERSAL SPACE "}] 
 

UNIVERSAL SPACE                        
 

1 

                             
 

                             
 

.8                              
 

.6                              
 

.4                              
 

.2 

                             
 

                             
 

0                              
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0 1 2 3 4 5 6 7  8 9 10 11 12 X  
 

 

 

Fig Graphic Interpretation of Fuzzy Set UNIVERSALSPACE 

 

16 



302 
 

SC - Fuzzy set theory – Fuzzy Membership 

• Finite and Infinite Universal Space 
 

Universal sets can be finite or infinite. 

 

Any universal set is finite if it consists of a specific number of different 

elements, that is, if in counting the different elements of the set, the 

counting can come to an end, else the set is infinite. 

 

Examples:  

1. Let N  be the universal space of the days of the week. 

  N = {Mo, Tu, We, Th, Fr, Sa, Su}. N is finite. 

2. Let M = {1, 3, 5, 7, 9, ...}. M is infinite. 

3. Let L = {u | u is a lake in a city }. L is finite. 

 

(Although it may be difficult to count the number of lakes in a 

city, but L is still a finite universal set.) 

 

17 
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SC - Fuzzy set theory – Fuzzy Membership 

• Graphic Interpretation of Fuzzy Sets  EMPTY 
 

An empty set is a set that contains only elements with a grade of 

membership equal to 0. 

 

Example: Let EMPTY be a set of people, in Minnesota, older than 

120. The Empty set is also called the Null set. 

 

The fuzzy set EMPTY , defined in the universal space 

 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

 

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}] 

 

The Set EMPTY in set X is : 

 

EMPTY = FuzzySet {{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, {8, 

0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} 

Therefore SetEmpty is represented as 

 

SetEmpty = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0}, {5,0},{6,0}, {7,0}, 

 

  {8, 0}, {9, 0}, 
{10, 0}, {11, 0}, {12, 0}} , UniversalSpace 

→ {1, 12, 1}] 

FuzzyPlot [ EMPTY, AxesLable 

→ {"X", " UNIVERSAL SPACE "}]    

EMPTY             

1               

.8               

.6               
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.4               

.2               

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

 

 

Fig Graphic Interpretation of Fuzzy Set EMPTY 
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SC - Fuzzy set theory – Fuzzy Operation 

2.2 Fuzzy Operations 

 

A fuzzy set operations are the operations on fuzzy sets. The fuzzy set 

operations are generalization of crisp set operations. Zadeh [1965] 

formulated the fuzzy set theory in the terms of standard operations: 

Complement, Union, Intersection, and Difference. 

 

In this section, the graphical interpretation of the following standard fuzzy 

set terms and the Fuzzy Logic operations are illustrated: 

 

Inclusion : 

 

 

FuzzyInclude [VERYSMALL, SMALL] 

 

 

Equality : 

 
 

FuzzyEQUALITY [SMALL, STILLSMALL] 

 

 

Complement : 

 
 

FuzzyNOTSMALL = FuzzyCompliment [Small] 

 

 

Union : 

 
 

FuzzyUNION = [SMALL 

 
 

∪ 

 
 

MEDIUM] 

 

 

Intersection : 

 
 

FUZZYINTERSECTON = [SMALL 

 
 

∩ 

 
 

MEDIUM] 
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SC - Fuzzy set theory – Fuzzy Operation 

• Inclusion 
 

Let A and B be fuzzy sets defined in the same universal space X. 

 

The fuzzy set A is included in the fuzzy set B  if and only if  for every x in 

 

the set X we have A(x) ≤ B(x) 

 

Example :      

The  fuzzy  set  UNIVERSALSPACE  numbers,  defined in  the  universal 

space X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace →  {1, 12, 1}]   

The fuzzy set B SMALL      

The Set SMALL in set X is :     

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

Therefore SetSmall is represented as 

 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

 

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

The fuzzy set A VERYSMALL   

The Set VERYSMALL in set X is :  

VERYSMALL = FuzzySet {{1, 1 },  {2, 0.8 }, {3, 0.7},  {4, 0.4},  {5, 0.2}, 

{6, 0.1}, {7, 0 }, {8, 0 },  {9, 0 }, {10, 0 },  {11, 0}, {12, 0}} 

 

Therefore SetVerySmall is represented as 

 

SetVerySmall = FuzzySet [{{1,1},{2,0.8}, {3,0.7}, {4,0.4}, {5,0.2},{6,0.1}, 

{7,0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 
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The Fuzzy Operation : Inclusion        
 

Include [VERYSMALL, SMALL]         
 

Membership Grade  B A         
 

1              
 

.8              
 

.6              
 

.4              
 

.2              
 

0             

X 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 
 

 

 

Fig Graphic Interpretation of Fuzzy Inclusion 

FuzzyPlot [SMALL, VERYSMALL] 
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SC - Fuzzy set theory – Fuzzy Operation 

• Comparability 
 

Two fuzzy sets A and B are comparable 

 

if the condition A ⊂  B or B ⊂  A holds, ie, 

 

if one of the fuzzy sets is a subset of the other set, they are comparable. 

 

Two fuzzy sets A and B are incomparable 

 

If the condition A ⊄  B or B ⊄  A holds. 

 

Example 1: 

 

Let A = {{a, 1}, {b, 1}, {c, 0}} 

 

B = {{a, 1}, {b, 1}, {c, 1}}. 

 

Then A is comparable to B, since 

 

Example 2 : 

 

 

 

 

and 

A is 

 

 

 

 

 

 

 

 

a subset of 

 

 

 

 

 

 

 

 

B. 

 

Let C = {{a, 1}, {b, 1}, {c, 0.5}} and 

 

D = {{a, 1}, {b, 0.9}, {c, 0.6}}. 

 

Then C and D are not comparable since 

 

C is not a subset of D and 

 

D is not a subset of C. 
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Property Related to Inclusion : 

 

for all x in the set X, if A(x) ⊂ B(x) ⊂ C(x), then accordingly A ⊂ C. 
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SC - Fuzzy set theory – Fuzzy Operation 

• Equality 
 

Let A and B 

Then A and B if 

and only if 

 

 

be fuzzy sets defined in the same space X. 

 

are equal, which is denoted X = Y 

 

for all x in the set X, A(x) = B(x). 

 

Example. 

 

The fuzzy set B SMALL 

 

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

The fuzzy set A STILLSMALL 

 

STILLSMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, 

 

{6, 0.3}, {7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

 

The Fuzzy Operation : Equality 

 

Equality [SMALL, STILLSMALL] 

 

Membership Grade  B A          

1               

.8               

.6               
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.4               

.2               

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

   Fig Graphic Interpretation of Fuzzy Equality    

     FuzzyPlot [SMALL, STILLSMALL]     

Note : If equality A(x) = B(x) is not satisfied even for one element x in 

 

 

the set X, then we say that A is not equal to B. 

 

22 
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SC - Fuzzy set theory – Fuzzy Operation 

 

• Complement            
 

Let A be a fuzzy set defined in the space X.       
 

Then the fuzzy  set B is  a complement  of the fuzzy set A, if and only if, 
 

for all x in the set X, B(x) = 1 - A(x).        
 

The complement of the fuzzy set A is often denoted by A' or Ac or 

 

 

 

A 
 

Fuzzy Complement : Ac(x) = 1 – A(x)        
 

Example 1.            
 

The fuzzy set A SMALL           
 

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 
 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 
 

The fuzzy set Ac NOTSMALL          
 

NOTSMALL = FuzzySet {{1, 0  }, {2, 0 }, {3, 0.1},  {4, 0.4},  {5, 0.6}, {6, 0.7}, 
 

 {7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}} 
 

 

The Fuzzy Operation : Compliment 

 

NOTSMALL = Compliment [SMALL] 

 

Membership Grade  A    Ac      
 

1              
 

.8              
 

.6              
 

.4              
 

.2              
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0             

X 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 
 

 

 

Fig Graphic Interpretation of Fuzzy Compliment 

FuzzyPlot [SMALL, NOTSMALL] 
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SC - Fuzzy set theory – Fuzzy Operation 

Example 2.            

The  empty  set  Φ and the universal set X, as  fuzzy sets,  are 

complements of one another.          

Φ ' = 

X , 

X' = 

Φ         

The fuzzy set B EMPTY           

Empty = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0}, {5, 0}, {6, 0},  

 {7, 0}, {8, 0}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

The fuzzy set A UNIVERSAL          

Universal = FuzzySet {{1, 1 }, {2, 1 }, {3, 1}, {4, 1}, {5, 1}, {6, 1}, 

 {7, 1}, {8, 1}, {9, 1 }, {10, 1 },  {11, 1}, {12, 1}} 

 

The fuzzy operation : Compliment 

 

EMPTY = Compliment [UNIVERSALSPACE] 

 

Membership Grade  B A         

1               

.8               

.6               

.4               

.2               

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

 

 

Fig Graphic Interpretation of Fuzzy Compliment 

FuzzyPlot [EMPTY, UNIVERSALSPACE] 
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SC - Fuzzy set theory – Fuzzy Operation 

• Union 
 

Let A and B be fuzzy sets defined in the space X. 

 

The union is defined as the smallest fuzzy set that contains both A and 

B. The union of A and B is denoted by A ∪ B. 

 

The following relation must be satisfied for the union operation 

: for all x in the set X, (A ∪ B)(x) = Max (A(x), B(x)). 

 

Fuzzy Union :  (A ∪  B)(x) = max [A(x), B(x)] for all x ∈  X 

 

Example 1 : Union of Fuzzy A and B     

A(x) = 0.6  and B(x) = 0.4 ∴ (A ∪ B)(x) = max [0.6, 0.4]  = 0.6 

Example 2 : Union of SMALL and MEDIUM     

The fuzzy set A SMALL         

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1},  {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

The fuzzy set B MEDIUM        

MEDIUM = FuzzySet {{1, 0 },  {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

 {7, 1},   {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1},  {12, 0}} 

The fuzzy operation :  Union       

FUZZYUNION = [SMALL 

∪ MEDIUM]       

 

SetSmallUNIONMedium = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5}, 

 

  {6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}} , 
 

        UniversalSpace → {1, 12, 1}] 
 

Membership Grade  FUZZYUNION = [SMALL ∪  MEDIUM]     
 

1              
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.8              
 

.6              
 

.4              
 

.2              
 

0             

X 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 
 

 

Fig Graphic Interpretation of Fuzzy Union 

FuzzyPlot [UNION] 

 

The notion of the union is closely related to that of the connective "or". 

 

Let A is a class of "Young" men, B is a class of "Bald" men. 

 

If "David is Young" or "David is Bald," then David is associated with the 

union of A and B. Implies David is a member of A ∪ B. 
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SC - Fuzzy set theory – Fuzzy Operation 

• Intersection 
 

Let A and B be fuzzy sets defined in the space X. Intersection is defined 

as the greatest fuzzy set that include both A and B. Intersection of A and 

B is denoted by A ∩ B. The following relation must be satisfied for the 

 

intersection operation : 

 

for all x in the set X, (A ∩ B)(x) = Min (A(x), B(x)).    

Fuzzy Intersection :  (A 

∩ B)(x) = min [A(x), B(x)] for all x ∈  X 

Example 1 : Intersection of Fuzzy A and B     

A(x) = 0.6  and  B(x) = 0.4  ∴ (A ∩  B)(x) = min [0.6, 0.4] = 0.4 

Example 2 : Union of SMALL and MEDIUM     

The fuzzy set A SMALL        

SMALL = FuzzySet {{1, 1  }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 

The fuzzy set B MEDIUM        

MEDIUM = FuzzySet {{1, 0 },  {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

 {7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}} 

The fuzzy operation : Intersection      

FUZZYINTERSECTION = min [SMALL 

∩ MEDIUM]    

 

SetSmallINTERSECTIONMedium = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2}, 

 

      {5,0.4}, {6,0.3}, {7,0.2}, {8, 0.1}, {9, 0}, 

   {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

Membership Grade  FUZZYINTERSECTON = [SMALL ∩ MEDIUM]   
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1              

.8              

.6              

.4              

.2              

0 0 1 2 3 4 5 6 7 8 9 10 11 12 X 

 

 

Fig Graphic Interpretation of Fuzzy Union 

FuzzyPlot [INTERSECTION] 
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SC - Fuzzy set theory – Fuzzy Operation 

■  Difference 
 

Let A and B be fuzzy sets defined in the space X. 

 

The difference of A and B is denoted by A ∩ B'.    

Fuzzy Difference : (A - B)(x) = min [A(x), 1- B(x)] for all x ∈  X 

Example : Difference of MEDIUM and SMALL     

The fuzzy set A MEDIUM       

MEDIUM = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0.2},  {5, 0.5}, {6, 0.8}, 

 {7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}} 

The fuzzy set B SMALL       

MEDIUM = FuzzySet {{1, 1 },  {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

 {7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}} 

 

Fuzzy Complement : Bc(x) = 1 – B(x) 

 

The fuzzy set Bc NOTSMALL 

 

NOTSMALL = FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7}, {7, 0.8}, 

{8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}} 

 

The fuzzy operation : Difference  by  the  definition  of  Difference 

 

FUZZYDIFFERENCE = [MEDIUM 

∩ SMALL']            
 

SetMediumDIFFERECESmall = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2},  
 

        {5,0.5}, {6,0.7}, {7,0.8}, {8, 0.9}, {9, 0.7},      
 

      {10, 0.4}, {11, 0.1}, {12, 0}} , 
UniversalSpace 

→ {1, 12, 1}] 
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Membership Grade   
FUZZYDIFFERENCE = [MEDIUM 

∪ SMALL' ]    
 

1 

                        
 

                        
 

.8 

                        
 

                        
 

                        
 

.6 

                        
 

                        
 

.4 

                        
 

                        
 

                        
 

.2 

                        
 

                        
 

0                         
 

0 1 2 3 4 5 6 7 8 9 10 11 12 X 
 

 

 

Fig Graphic Interpretation of Fuzzy Union 

FuzzyPlot [UNION] 
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SC - Fuzzy set theory – Fuzzy Properties 

 

2.3 Fuzzy Properties 

 

Properties related to Union, Intersection, Differences are illustrated below. 

 

■  Properties Related to Union 
 

The properties related to union are : 

 

Identity, Idempotence, Commutativity and Associativity. 

 

■ Identity:
 

 

A ∪  

Φ 

 

 

= A 

 

input = Equality [SMALL ∪ 

output = True 

 

EMPTY , SMALL] 

 

 

A 

∪ 

 
 

X = X 

 

input 
 

= Equality [SMALL 
∪ 

 

UnivrsalSpace , UnivrsalSpace] 

 

output = True 

 

■ Idempotence : 

A ∪ A = A
 

 

input = Equality [SMALL ∪  SMALL , SMALL] 

 

output = True 
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• Commutativity :
 

 

A ∪  B = B ∪  A 

 

input = Equality [SMALL ∪  MEDIUM, MEDIUM ∪  SMALL] 

 

output = True 
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SC - Fuzzy set theory – Fuzzy Properties 

[Continued from previous slide] 

- Associativity:
 

 

A ∪  (B∪  C) = (A∪  B) ∪  C 

 

input = Equality [Small ∪ 

 

 

(Medium 

∪ 

 

 

Big) , (Small 

 

 

∪ 

 

 

Medium) 

∪ 

 

 

Big] 

 

output = True 

 

Fuzzy Set Small , Medium , Big 

 

Small = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9},  {4, 0.6},  {5, 0.4}, {6, 0.3}, 

 

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}} 

 

Medium = FuzzySet {{1, 0  }, {2, 0 }, {3, 0}, {4, 0.2},  {5, 0.5}, {6, 0.8}, 

 

{7, 1}, {8, 1}, {9, 0 }, {10, 0 }, {11, 0.1}, {12, 0}} 

 

Big 

 

 

= FuzzySet [{{1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0.1}, {7,0.2}, 

{8,0.4}, {9,0.6}, {10,0.8}, {11,1}, {12,1}}] 

 

Calculate Fuzzy relations : 

 

• Medium ∪ Big = FuzzySet [{1,0},{2,0}, {3,0}, {4,0.2}, {5,0.5}, 

{6,0.8},{7,1}, {8, 1}, {9, 0.6}, {10, 0.8}, {11, 1}, {12, 1}] 

 

• Small ∪ Medium = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5}, 

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}] 

 



325 
 

• Small ∪ (Medium ∪ Big) = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, 

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.8}, {11, 1}, {12, 1}] 

 

• (Small ∪ Medium) ∪ Big] = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, 

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7},{10, 0.8}, {11, 1},{12, 1}] 

 

Fuzzy set (3) and (4) proves Associativity relation 
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SC - Fuzzy set theory – Fuzzy Properties 

■  Properties Related to Intersection 
 

Absorption, Identity, Idempotence, Commutativity, Associativity. 

 

• Absorption by Empty Set :
 

 

A ∩  

Φ 

 

 

= Φ 

 
 

input = Equality [Small 

∩ 

 

Empty , Empty] 

 

output = True 

 

■ Identity :
 

 

A ∩ X = A 

 

input = Equality [Small ∩ UnivrsalSpace , Small] 

output = True 

• Idempotence :
 

 

A ∩  A = A
 

 

input = Equality [Small ∩ Small , Small] 

output = True 

■ Commutativity :
 

 

A 

∩ 

 

 

B = B 

 

 

∩ 

 

 

A 

 

input = Equality [Small ∩  Big , Big 

∩ 

 

Small] 

 

output = True 
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■ Associativity : 

 

A 

∩ 

 

 

(B 

∩ 

 

 

C) = (A 

∩ 

 

 

B) 

∩ 

 

 

C 

 

input = Equality [Small 

∩ 

 

(Medium 

∩ 

 

Big), (Small 

∩ 

 

Medium) 

∩ 

 

Big] 

 

output = True 
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SC - Fuzzy set theory – Fuzzy Properties 

■  Additional Properties 
 

Related to Intersection and Union 

 

• Distributivity:
 

 

A ∩  (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

 

input = Equality [Small ∩  (Medium ∪  Big) , 

 

(Small ∩  Medium) ∪  (Small ∩  Big)] 

 

output = True 

 

• Distributivity:
 

 

A ∪  (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

 

input = Equality [Small ∪  (Medium ∩  Big) , 

 

(Small ∪  Medium) ∩  (Small ∪  Big)] 

 

output = True 

 

• Law of excluded middle :
 

 

A ∪  A' = X
 

 

input = Equality [Small ∪ NotSmall , UnivrsalSpace ] 

output = True 

 

= Law of contradiction
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A ∩  A' = Φ
 

 

input = Equality [Small ∩ NotSmall , EmptySpace ] 

output = True 
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SC - Fuzzy set theory – Fuzzy Properties 

aa Cartesian Product Of Two Fuzzy Sets 
 

 Cartesian Product of two Crisp Sets
 

 

Let A and B be two crisp sets in the universe of discourse X and Y.. 

The Cartesian product of A and B is denoted by A x B
 

 

Defined as  A x B = { (a , b) │ a ∈  A , b ∈  B }
 

 

Note : Generally  A x B ≠ B x A      
 

Example : Graphic representation of A x B 
 

Let A = {a, b, c} and B = {1, 2} 

B 

 

 

  
 

   
 

     
 

then A x B = { (a , 1) , (a , 2) , 

2     
 

     
 

 (b , 1) , (b , 2) , 1     
 

 

(c , 1) , (c , 2) } 

    

A 

 

     
 

    ab c 
 

 

 

• Cartesian product of two Fuzzy Sets
 

 

Let A and B be two fuzzy sets in the universe of discourse X and Y.
 

 

The Cartesian product of A and B is denoted by  A x B   

Defined by their membership function  A (x) and  B (y) as  

  A x B (x , y) = min [  A (x) ,  B (y) ] =  A (x) ∧  B (y)  

or  A x B (x , y) =  A (x)  B (y)    

 for all   x ∈ X and y ∈ Y    
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Thus the  Cartesian  product A x B is  a  fuzzy  set  of ordered pair 

(x , y) for all x ∈  X 

and y ∈  Y,  

with grade  membership of (x , y) in 

 

• x Y  given by the above equations . 

 

In a sense Cartesian product of two Fuzzy sets is a Fuzzy Relation. 
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SC - Fuzzy set theory – Fuzzy Relations 

- Fuzzy Relations 
 

Fuzzy Relations describe the degree of association of the elements; 

Example : “x is approximately equal to y”. 

 

− Fuzzy relations offer the capability to capture the uncertainty and vagueness 

in relations between sets and elements of a set. 

 

 

− Fuzzy Relations make the description of a concept possible. 

 

 Fuzzy Relations were introduced to supersede classical crisp relations; It 

describes the total presence or absence of association of elements. 

 

In this section, first the fuzzy relation is defined and then expressing fuzzy 

relations in terms of matrices and graphical visualizations. Later the properties 

of fuzzy relations and operations that can be performed with fuzzy relations are 

illustrated. 

 

33 



333 
 

SC - Fuzzy set theory – Fuzzy Relations 

 

3.1 Definition of Fuzzy Relation 

 

Fuzzy relation is a generalization 

 

 

of 

 

 

the 

 

 

definition 

 

 

of 

 

 

fuzzy 

 

 

set 

 

from 2-D space to 3-D space. 

 

• Fuzzy relation definition 
 

Consider a Cartesian product 

 

A x B 

 

where A 

 

 

= { (x , y) | x ∈ A, y ∈ B } 

 

and B are subsets of universal sets U1 and U2. 

 

 

Fuzzy relation 

 
 

on 

 
 

A x B is denoted by R 

 
 

or 

 

 

R(x , y) 

 
 

is defined as the set 

 

 

R = { ((x , y) , R (x , y)) | (x , y) 

 

 

∈ 

 

 

A x B , 

 

 

R (x , y) 

 

 

∈ 

 

 

[0,1] } 

 

where R (x , y) is a function in two variables called membership function. 

 

− It gives the degree of membership of the ordered pair (x , y) in R 

associating with each pair (x , y) in A x B a real number in the interval 

[0 , 1]. 

 

− The degree of membership indicates the degree to which x is in relation 

to y. 
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Note : 

 

− Definition of fuzzy relation is a generalization of the definition of fuzzy 

 

set from the 2-D space (x , , R (x)) to 3-D space ((x , y) , R (x , y)). 

 

− Cartesian product A x B is a relation by itself between x and y . 

 

− A fuzzy relation R is a sub set of R3  namely 

 

{ ((x , y) , R (x , y)) | ∈ A x B x [0,1] ∈ U1 x U2 x [0,1] } 
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SC - Fuzzy set theory – Fuzzy Relations 

• Example of Fuzzy Relation 
 

- =  { ((x1 , y1) , 0)) ,  ((x1 , y2) , 0.1)) , ((x1 , y3) , 0.2)) , 

((x2 , y1) , 0.7)) , ((x2 , y2) , 0.2)) , ((x2 , y3) , 0.3)) , 
 

((x3 , y1) , 1)) , ((x3 , y2) , 0.6)) , ((x3 , y3) , 0.2)) , 

 

The relation can be written in matrix form as 

 

     

y 

 

y1 Y2 Y3 

 

      
 

     x     
 

     

x1 

 

0 0.1 0.2 

 

R 

    
 

  

X2 

 

0.7 0.2 0.3 

 

      
 

     X3  1 0.6 0.2 
 

          
 

 

 

where symbol    means ' is defined as' and 

 

the values in the matrix are the values of membership function: 

 

R (x1 , y1) = 0 R (x1 , y2) = 0.1 R (x1 , y3) = 0.2 

R (x2 , y1) = 0.7 R (x2, y2) = 0.2 R (x2 , y3) = 0.3 

R (x3 , y1) = 1 R (x3 , y2) = 0.6 R (x3 , y3) = 0.2 

 

 

Assuming x1 = 1 , x2 = 2 , x3 = 3 

the relation can be graphically 

 

(X, Y, ) as : 
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and y1 = 1 , y2= 2 , y3= 3 , represented 

by points in 3-D space 

 

 
 

 

Note : Since the values of the membership 

function 0.7, 1, 0.6 are in the direction of x 

below the major diagonal (0, 0.2, 0.2) in the 

matrix are grater than those 0.1, 0.2, 0.3 in the 

direction of y, we therefore say that 

the relation R describes x is grater 

than y. 
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SC - Fuzzy set theory – Fuzzy Relations 

3.2 Forming Fuzzy Relations 

 

Assume that V and W are two collections of objects. 

 

A fuzzy relation is characterized in the same way as it is in a fuzzy set. 

 

− The first item is a list containing element and membership grade pairs, 

 

{{v1, w1}, R11}, {{ v1, w2}, R12}, ... , {{ vn, wm}, Rnm}}. 

 

where { v1, w1}, { v1, w2}, ... , { vn, wm} are the elements of the relation are 

defined as ordered pairs, and { R11 , R12 , ... , Rnm} are the membership grades 

of the elements of the relation that range from 0 to 1, inclusive. 

− The second item is the universal space; for relations, the universal 

space consists of a pair of ordered pairs, 

 

{{ Vmin, Vmax, C1}, { Wmin, Wmax, C2}}. 

 

where the first pair defines the universal space for the first set and the second 

pair defines the universal space for the second set. 

 

Example showing how fuzzy relations are represented 

 

Let V = {1, 2, 3} and W = {1, 2, 3, 4}. 

 

A fuzzy relation R is, a function defined in the space V x W, which takes 

values from the interval [0, 1] , expressed as R : V x W → [0, 1] 

 

■  = FuzzyRelation [{{{1, 1}, 1}, {{1, 2}, 0.2}, {{1, 3}, 0.7}, {{1, 4}, 0}, {{2, 

1}, 0.7}, {{2, 2}, 1}, {{2, 3}, 0.4}, {{2, 4}, 0.8}, {{3, 1}, 

0}, {{3, 2}, 0.6}, {{3, 3}, 0.3}, {{3, 4}, 0.5}, 

UniversalSpace → {{1, 3, 1}, {1, 4, 1}}] 
 

This relation can be represented in the following two forms shown below 
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Elements of fuzzy relation are ordered pairs {vi , wj}, where vi is first and 

wj is second element. The membership grades of the elements are 

represented by the heights of the vertical lines. 
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SC - Fuzzy set theory – Fuzzy Relations 

3.3 Projections of Fuzzy Relations 

 

Definition : A fuzzy relation on A x B is denoted by R or R(x , y) is 

defined as the set 

 

R = { ((x , y) , R (x , y)) | (x , y) ∈  A x B , R (x , y) ∈  [0,1] } 

 

where R(x , y) is a function in two variables called membership 

 

function. The first, the second and the total projections of fuzzy 

 

relations are stated below. 

 

■  First Projection of R :  defined as 
 

R
(1)

 = {(x) ,  R
(1)

 (x , y))} 

 

= {(x) , max  R (x , y)) | (x , y) ∈  A x B } 

Y 

 

■  Second Projection of R :  defined as 
 

R
(2)

 = {(y) ,  R
(2)

 (x , y))} 

 

 

= {(y) , R(x , y)) | (x , y)∈ A x B } 

 

 

 

• Total Projection of R :  defined as 
 R(T) = 

 

max 
X 

 

max 
Y 

 

max 

X 
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max max 

X Y 

 

 

{ R (x , y) | 

 

 

(x , y) 

 

 

∈ 

 

 

A x B } 

 

 

Note : In all these three expression 

 

means max with respect to y while x is considered fixed 

means max with respect to x while y is considered fixed 

The Total Projection is also known as Global projection 
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SC - Fuzzy set theory – Fuzzy Relations 

■  Example : Fuzzy Projections 
 

The Fuzzy Relation  R together with First, Second and Total Projection 
 

of R are shown below.                   
 

        

x 

y 

 

y1 y2 y3 y4  Y5 

  

R(1) 

     
 

                
 

                             
 

        x1  0.1 0.3 1 0.5 0.3      1      
 

 

R 

    x2  0.2 0.5 0.7 0.9 0.6    0.9      
 

 

    

x3 

 

0.3 0.6 1 0.8 0.2 

     

1 

     
 

               
 

                   
 

        R(2)  0.3 0.6 1 0.9 0.6      1 =  R(T) 
 

Note : 

                         
 

                         
 

For R
(1)

  select max  means max with respect to y while x is considered fixed 
 

         Y                     
 

For R
(2)

  select max  means max with respect to x while y is considered fixed 
 

         x                     
 

For R(T)  select max with respect to R(1)  and R(2)         
 

The Fuzzy plot of these projections are shown below.       
 

1 

 R(1)             

1 

R(2)           
 

                            
 

.8 

                

.8 

            
 

                            
 

                             
 

.6                 .6             
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.4                 

.4 

            
 

                             
 

.2 

           

x 

    

.2 

            
 

                           
 

                          

y 

 

0                0           
 

  

1 

 

2 3 4 5 

                  
 

         

1 2 3 4 5 

 
 

                 

 

  

                  
 

                               

 

 

Fig Fuzzy plot of 1st projection R
(1)

 Fig Fuzzy plot of 2nd projection R
(2)
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SC - Fuzzy set theory – Fuzzy Relations 

3.4 Max-Min and Min-Max Composition 

 

The operation composition combines the fuzzy relations in different 

 

variables, say (x , y) and (y , z) ; 

x 

∈  

A ,  y 

∈  B , 

z 

∈ C . 

Consider the relations :        

R1(x , y) = { ((x , y) , R1 (x , y)) | (x , y) ∈ A x B }  

R2(y , z) = { ((y , y) , R1 (y , z)) | (y , z) ∈ B x C }  

The domain of R1   is A x B  and the domain of R2 is B x C 

 

◊ Max-Min Composition 
 

Definition : The Max-Min composition denoted by R1 ο R2 with 

membership function  R1 ο R2 defined as 

 

R1 

ο 

 

 

R2 

 

 

= 

 

 

{ ((x , z) , 

 

 

max(min (R1 (x , y) , 

Y 

(x , z) 

∈ 

 

 

R2 (y , z))))} , 

 

A x C , y ∈  B 

 

 

Thus 

 

 

R1 

ο 

 

 

R2 

 

 

is relation in the domain 

 

 

A x C 

 

 

An example of the composition is shown in the next slide. 
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SC - Fuzzy set theory – Fuzzy Relations 

◊ Example : Max-Min Composition 
 

Consider the relations R1(x , y) and R2(y , z) as given below. 

 

    

x 

y y1 y2 y3     

y 

z z1 z2 z3 
 

                
 

R1 

   

x1 

 0.1 0.3 0 

R2 

   

y1 

 0.8 0.2 0 
 

    

0.8 1 0.3 

    

0.2 1 0.6 

 

   

x2 

    

y2 

 
 

          
 

             

y3 
 0.5 0 0.4 

 

             
 

                  
 

 

 

Note : Number of columns in the first table and second table are equal. 

 

Compute max-min composition denoted by R1 ο R2  : 

 

Step -1 Compute min operation (definition in previous slide). 

Consider row x1  and column z1 , means the pair (x1 , z1) for all yj , 

j = 1, 2, 3,  and perform min operation 

min (R1 (x1 , y1) , R2 (y1 , z1)) = min (0.1, 0.8) = 0.1, 

min (R1 (x1 , y2) , R2 (y2 , z1)) = min (0.3, 0.2) = 0.2, 

min (R1 (x1 , y3) , R2 (y3 , z1)) = min ( 0, 0.5) = 0, 

Step -2 Compute max operation (definition in previous slide). 

For  x = x1 ,  z = z1 , y = yj , j = 1, 2, 3, 

 

Calculate the grade membership of the pair (x1 , z1) as 

 

{ (x1 , z1) , max ( (min (0.1, 0.8), min (0.3, 0.2), min (0, 0.5) ) 

i.e. { (x1 , z1) , max(0.1, 0.2, 0) } 
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i.e. { (x1 , z1) , 0.2 } 

 

Hence the grade membership of the pair (x1 , z1) is  0.2 . 

 

Similarly, find all the grade membership of the pairs 

 

(x1 , z2) , (x1 , z3) , (x2 , z1) , (x2 , z2) , (x2 , z3) 

 

The final result is 

 

 

z 

 

z1 z2 z3 

 

  
 

R1 ο R2 = 

x     
 

x1  0.1 0.3 0 
 

 x2  0.8 1 0.3 
 

      
 

 

Note : If tables R1 and R2 are considered as matrices, the operation 

composition resembles the operation multiplication in matrix calculus 

linking row by columns. After each cell is occupied max-min value (the 

product is replaced by min, the sum is replaced by max). 
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SC - Fuzzy set theory – Fuzzy Relations 

■  Example : Min-Max Composition 
 

The min-max composition is similar to max-min composition with the 

difference that the roll of max and min are interchanged. 

 

Definition : The max-min composition denoted by R1 R2 with membership 

function  R1 R2 is defined by 

R1 R2  = { ((x , z) , 
min

y (max (R1 (x , y) , R2 (y , z))))} , 

 

(x , z) ∈ A x C , y ∈ B 

 

Thus R1 R2 is relation in the domain A x C 

 

Consider the relations R1(x , y) and R2(y , z) relation 

of previous example of max-min composition, 

 

 

as given by the same 

that is 

 

 

     

y 

 

y1 y2 y3 

   

z 

 

z1 z2 z3 

 

          
 

    x         y     
 

R1    x1   0.1 0.3 0 

R2 

  y1  0.8 0.2 0 
 

    

x2 

  

0.8 1 0.3 

  

y2 

 

0.2 1 0.6 

 

         
 

         
 

          
 

             

y3  0.5 0 0.4 

 

             
 

                  
 

 

 

After computation in similar way as done in the case of max-min 
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composition, the final result is  
 

 

 z 

 

z1 z2 z3 

 

  
 

R1   R2 = 

 x     
 

 x1  0.3 0 0.1 
 

  x2  0.5 0.4 0.4 
 

       
 

 

 

◊ Relation between Max-Min and Min-Max Compositions 
 

The Max-Min and Min-Max Compositions are related by the formula 
 

 

R1 ο R2 = R1 R2 
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Fuzzy Systems 

 

What are Fuzzy Systems ? 

 

• Fuzzy Systems include Fuzzy Logic and Fuzzy Set Theory. 
 

• Knowledge exists in two distinct forms : 
 

− the Objective knowledge that exists in mathematical form is used in 

engineering problems; and 

 

− the  Subjective  knowledge  that  exists  in  linguistic  form,  usually 

 

impossible to quantify. 

 

Fuzzy Logic can coordinate these two forms of knowledge in a logical way. 

 

• Fuzzy Systems can handle simultaneously the numerical data and 

linguistic knowledge. 
 

• Fuzzy Systems provide opportunities for modeling of conditions which are 

inherently imprecisely defined. 

 

• Many real world problems have been modeled, simulated, and replicated 

with the help of fuzzy systems. 

 

• The applications of Fuzzy Systems are many like : Information retrieval 

systems, Navigation system, and Robot vision. 

 

• Expert Systems design have become easy because their domains are 

inherently fuzzy and can now be handled better; 
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examples : Decision-support systems, Financial planners, Diagnostic 

system, and Meteorological system. 

 

03 
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Sc – Fuzzy System Introduction 

• Introduction 
 

Any system that uses Fuzzy mathematics may be viewed as Fuzzy system. 

 

The Fuzzy Set Theory - membership function, operations, properties and the 

relations have been described in previous lectures. These are the prerequisites 

for understanding Fuzzy Systems. The applications of Fuzzy set theory is Fuzzy 

logic which is covered in this section. 

 

Here the emphasis is on the design of fuzzy system and fuzzy controller in a 

 

closed–loop. The specific topics of interest are : 

 

− Fuzzification of input information, 

 

− Fuzzy Inferencing using Fuzzy sets , 

 

− De-Fuzzification of results from the Reasoning process, and 

 

− Fuzzy controller in a closed–loop. 

 

 

Fuzzy Inferencing, is the core constituent of a fuzzy system. A block schematic 

of Fuzzy System is shown in the next slide. Fuzzy Inferencing combines the 

facts obtained from the Fuzzification with the fuzzy rule base and conducts the 

Fuzzy Reasoning Process. 
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Sc – Fuzzy System Introduction 

• Fuzzy System 
 

A block schematic of Fuzzy System is shown below. 
 

 

Fuzzy 

Rule Base 

 

Input output 

variables variables 
 

X1 

  

Fuzzy 

  

Y1 

 

    
 

X2 

Fuzzification 

 

Inferencing 

 

Defuzzification 

Y2 
 

    
 

Xn      Ym 
 

       
 

       
 

 

 

 

 

Membeship Function 

 

Fig. Elements of Fuzzy System 

 

Fuzzy System elements 

 

− Input Vector : X = [x1 , x2, . . . xn ] 
T
 are crisp values, which are 

transformed into fuzzy sets in the fuzzification block. 

 

− Output Vector : Y = [y1  , y2, . . . ym  ] 
T
  comes out  from  the 
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defuzzification  block, which transforms an output  fuzzy set back to 

 

a crisp value. 

 

− Fuzzification : a process of transforming crisp values into grades of 

 

membership for linguistic terms, "far", "near", "small" of fuzzy sets. 

 

− Fuzzy Rule base : a  collection  of  propositions  containing  linguistic 

 

variables; the rules are expressed in the form: 

 

If (x is A ) AND (y is B ) . . . . . . THEN (z is C) 

 

where x, y and z represent variables (e.g. distance, size) and 

 

A, B and Z are linguistic variables (e.g. `far', `near', `small'). 

 

− Membership function : provides a measure of the degree of similarity 

 

of elements in the universe of discourse U to fuzzy set. 

 

− Fuzzy Inferencing : combines the facts obtained from the Fuzzification 

with the rule base and conducts the Fuzzy reasoning process. 

 

− Defuzzyfication: Translate results back to the real world values. 
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Sc – Fuzzy System – Fuzzy logic 

1. Fuzzy Logic 
 

A simple form of logic, called a two-valued logic is the study of "truth tables" 

and logic circuits. Here the possible values are true as 1, and false as 0. 

 

This simple two-valued logic is generalized and called fuzzy logic which treats 

"truth" as a continuous quantity ranging from 0 to 1. 

 

Definition : Fuzzy logic (FL) is derived from fuzzy set theory dealing with 

reasoning that is approximate rather than precisely deduced from classical two-

valued logic. 

 

− FL is the application of Fuzzy set theory. 

 

− FL allows set membership values to range (inclusively) between 0 and 1. 

 

− FL is capable of handling inherently imprecise concepts. 

 

− FL allows in linguistic form, the set membership values to imprecise concepts 

like "slightly", "quite" and "very". 
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Sc – Fuzzy System – Fuzzy logic 

2.1 Classical Logic 

 

Logic is used to represent simple facts. Logic defines the ways of putting 

symbols together to form sentences that represent facts. Sentences are 

either true or false but not both are called propositions. 

 

Examples :     

Sentence Truth value Is it a Proposition ? 

"Grass is green" "true" Yes 

"2 + 5 = 5" "false" Yes 

"Close the door" - No 

"Is it hot out side ?" - No 

"x > 2" - No (since x is not defined) 

"x = x" - No 

 

(don't  know what is "x" and "=" 

mean; "3 = 3" or say "air is equal 

to air" or "Water is equal to water" 

has no meaning) 

 

• Propositional Logic (PL) 
 

A proposition is a statement - which in English is a declarative sentence 

and Logic defines the ways of putting symbols together to form sentences 

that represent facts. Every proposition is either true or false. Propositional 

logic is also called boolean algebra. 

 

Examples: (a) The sky is blue., (b) Snow is cold. , (c) 12 * 12=144 
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Propositional logic : It is fundamental to all logic. 

 

• Propositions are “Sentences”; either true or false but not both. 
 

• A sentence is smallest unit in propositional logic 
 

• If proposition is true, then truth value is "true"; else “false” 
 

‡  Example ; 

 

 

Sentence 

 

 

"Grass is green"; 

 

Truth value “ true”; 

 

Proposition “yes” 
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Sc – Fuzzy System – Fuzzy logic 

ƒ  Statement, Variables and Symbols 

 

Statement : A simple statement is one that does not contain any other 

statement as a part. A compound statement is one that has two or more 

simple statements as parts called components. 

 

Operator or connective : Joins simple statements into compounds, and 

joins compounds into larger compounds. 

 

Symbols for connectives 

 

assertion P      "p is true" 

       

nagation ¬p ~ !  NOT "p is false" 

        

conjunction 
p 

∧ q · && & AND "both p and q are true" 

       

disjunction P v q || ׀  OR "either p is true, 

       or q is true, 

       or both " 

        

implication p → q ⊃ ⇒  if . . then "if p is true, then q is true" 

       " p implies q " 

        

equivalence ↔  ≡ ⇔  if and only if "p and q are either both true 

       or both false" 
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Sc – Fuzzy System – Fuzzy logic 

• Truth Value 

 

The truth value of a statement is its truth or falsity , 

 

• is either true or false, 
 

~pis either true or false, 

 

p v q  is either true or false, and so on. 

 

"T" or "1" means "true". and 

 

"F" or "0" means "false" 

 

Truth table is a convenient way of showing relationship between several 

propositions. The truth table for negation, conjunction, disjunction, 

implication and equivalence are shown below. 

           

 p q ¬p ¬q p ∧  q p v q p→  q p ↔ q q→  p 

           

 T T F F T T T T  T 

           

 T F F T F T F F  T 

           

 F T T F F T T F  F 

           

 F F T T F F T T  T 
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Sc – Fuzzy System – Fuzzy logic 

■  Tautology                 
 

A  Tautology  is  proposition  formed by combining other propositions 
 

(p, q, r, . . .) which is true regardless of truth or falsehood  of  p, q, 
 

r, . . . .                   
 

The important tautologies are :           
 

  (p→  q) ↔ 

¬ [p 

∧ (¬q)] and (p→ q) ↔ 

(¬p) 

∨ q    
 

A proof of these tautologies, using the truth tables are given below. 
 

Tautologies (p→  q) ↔ 

¬ [p 

∧ (¬q)] and  (p→  q) ↔  
(¬p) 

∨ q 
 

    Table 1: Proof of Tautologies        
 

               
 

 p  q 

p→  

q ¬q p ∧  (¬q) 

¬ [p ∧  
(¬q)]  ¬p  

(¬p) 

∨ q   
 

                    
 

 T  T T  F F   T   F   T    
 

                    
 

 T  F F  T T   F   F   F    
 

                    
 

 F  T T  F F   T   T   T    
 

                    
 

 

F 

 

F T 

 

T 
F   

T 

  

T 

  

T 

   
 

             
 

                    
 

 

Note : 

 

- The entries of two columns p→ q and  [p ∧ (q)] are identical, 

proves the tautology. Similarly, the entries of two columns p→ q and 

(p) ∨ q are identical, proves the other tautology. 
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- The importance of these tautologies is that they express the 

membership function for p→ q in terms of membership functions of 

either propositions p and q or p and q. 
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Sc – Fuzzy System – Fuzzy logic 

■ Equivalences 

 

Between Logic , Set theory and Boolean algebra. 

 

Some mathematical equivalence between Logic and Set theory and the 

correspondence between Logic and Boolean algebra (0, 1) are given 

below. 

 

 Logic  Boolean Algebra (0, 1)  Set theory  
 

          
 

 T  1      
 

 F  0      
 

 
∧  x  ∩ , ∩ 

 

 ∨  +  ∪ , U 
 

¬  ′ ie complement   ( ― )  
 

 

↔ 

         

   =      
 

 

p,  q,  r 

 

a, b,  c 
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Sc – Fuzzy System – Fuzzy logic 

• Membership Functions obtain from facts 

 

Consider the facts (the two tautologies) 

 

(p→  q) ↔ [p∧(q)] and (p→  q) ↔ (p) ∨ q 

 

Using these facts and the equivalence between logic and set theory, 

we can obtain membership functions for p→ q (x , y) . 

 

From 1st fact :  p→ q (x , y) = 1 -  p ∩ 

 

(x , y) 

  
 

q   
 

   = 1 – min [ p(x) , 1 -  q (y)] Eq (1) 
 

From 2nd fact : p→ q (x , y) = 1 -  

 

U q (x , y) 

  
 

p   
 

   = max [ 1 -  p (x) ,  q (y)] Eq (2) 
 

 

Boolean truth table below shows the validation membership functions 

 

  Table-2 : Validation of Eq (1) and Eq (2) 
 

      
 

 p(x)  q(y) 1 -  p (x) 1 -  q (y) max [ 1 -  p (x) , 1 – min [ p(x) , 
 

     q (y)] 1 -  q (y)] 
 

1 1 0 0 1 1 
 

      
 

1 0 

0 1 0 0 

 

  
 

0 1 1 0 1 1 
 

      
 

0 0 1 1 1 1 
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Note : 

 

■  Entries in last two columns of this table-2 agrees with the entries in 

table-1 for p→ q , the proof of tautologies, read T as 1 and F as 0. 
 

■  The implication membership functions of Eq.1 and Eq.2 are not the 

only ones that give agreement with p→ q. The others are : 
 

p

→ 

 

 

q (x , y) = 1 -  p 

 

 

(x) (1 - 

 

 

 q (y)) 

 

 

Eq (3) 

 

 

p

→ 

 

 

q (x , y) = 

 

 

min [ 1, 1 -  p (x) + 

 

 

 q (y)] 

 

 

Eq (4) 
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Sc – Fuzzy System – Fuzzy logic 

• Modus Ponens and Modus Tollens 
 

In traditional propositional logic there are two important inference 

rules, Modus Ponens and Modus Tollens. 

 

Modus Ponens 

 

Premise 1 : " x is A " 

 

Premise 2 : " if x is A then y is B " ;  Consequence :  " y is B " 

 

Modus Ponens is associated with the implication " A implies B " [A→ B] 

In terms of propositions p and q, the Modus Ponens is expressed as 

 

(p ∧ (p → q)) → 

q Modus Tollens 

 

Premise 1 : " y is not B " 

 

Premise 2 : " if x is A then y is B " ; Consequence : " x is not A " In 

terms of propositions p and q, the Modus Tollens is expressed as 

 

(¬ q 

∧ 

 
 

(p 

→ 

 
 

q)) 

 
 

→ 

 

¬ p 
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Sc – Fuzzy System – Fuzzy logic 

2.2 Fuzzy Logic 

 

Like the extension of crisp set theory to fuzzy set theory, the extension of 

crisp logic is made by replacing the bivalent membership functions of the 

crisp logic with the fuzzy membership functions. 

 

In crisp logic, the truth value acquired by the proposition are 2-valued, 

namely true as 1 and false as 0. 

 

In fuzzy logic, the truth values are multi-valued, as absolute true, partially 

true, absolute false etc represented numerically as real value between 

 

■  to 1. 

 

Note : The fuzzy variables in fuzzy sets, fuzzy propositions, fuzzy relations 

etc are represented usually using symbol ~ as 
~

P but for the purpose of 

easy to write it is always represented as P . 
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Sc – Fuzzy System – Fuzzy logic 

- Recaps 
 

01 Membership function  A (x) describes the membership of the elements x of the 

base set X in the fuzzy set A . 

 

• Fuzzy Intersection operator ∩ ( AND connective ) applied to two fuzzy sets A 

and B with the membership functions  A (x) and  B (x) based on min/max 

operations is  A ∩ B = min [  A (x) ,  B (x) ] , x ∈ X (Eq. 01) 

 

• Fuzzy Intersection operator ∩ ( AND connective ) applied to two fuzzy sets A 
 

and B  with the membership functions  A (x) and  B (x) based on algebraic  

product is   A ∩ B  =   A (x)  B (x) , x ∈   X (Eq. 02)   

 

4. Fuzzy Union operator U ( OR connective ) applied to two fuzzy sets A and B with 

the membership functions  A (x) and  B (x) based on min/max 

operations is AUB= max [  A (x) ,  B (x) ] , x ∈ X (Eq. 03) 

 

• Fuzzy Union operator U ( OR connective ) applied to two fuzzy sets A and B  

with the membership functions  A (x) and  B (x) based on algebraic sum is 

 A U B  =   A (x) +  B (x) -  A (x)  B (x) , 
x 

∈ X (Eq. 04)   

06  Fuzzy Compliment  operator ( ― ) ( NOT operation ) applied to fuzzy set  A 

with the membership function  A (x) is  = 
1 -  A (x) , x 

∈ X  (Eq. 05) 

   A     

 

4. Fuzzy relations combining two fuzzy sets by connective "min operation" is an 
 

operation by cartesian product R : X x Y → [0 , 1].      
 

 R(x,y) = min[ A (x),  B (y)] (Eq. 06) or 

   

Y 

 

V h-m m 

 

    
 

         
 

 R(x,y) =  A (x)  B (y) (Eq. 07) 

    x     
 

    G  1 0.5 0.0 
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Example : Relation R between fruit colour x 

 R  

Y 

 

0.3 1 0.4 

 

    
 

    
 

and maturity grade y characterized by base set 

R  0 0.2 1 
 

     
 

     
 

 

 

linguistic colorset X = {green, yellow, red} 

 

maturity grade as Y = {verdant, half-mature, mature} 

 

• Max-Min Composition - combines the fuzzy relations 

variables, say (x , y) and (y , z) ; x ∈ A , y ∈ B , z ∈ C . 

consider the relations : 
 

R1(x , y) = { ((x , y) , R1 (x , y)) | (x , y) ∈  A x B } 

 

R2(y , z) = { ((y , y) , R1 (y , z)) | (y , z) ∈  B x C } 

 

The domain of R1 is A x B and the domain of R2 is B x C 

 

max-min composition denoted by R1 

ο 

 

 

R2 

 

 

with membership function  R1 ο R2 

 
 

R1 

ο 

 

R2 

 

= { ((x , z) , 

 

max 

y 

 

(min (R1 (x , y) , R2 (y , z))))} , 

(x , z) ∈  A x C , y ∈  B 

 

 

(Eq. 08) 

 

Thus 
 

R1 

ο 

 

R2 

 

is relation in the domain 

 

A x C 
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Sc – Fuzzy System – Fuzzy logic 

- Fuzzy Propositional 
 

A fuzzy proposition is a statement P which acquires a fuzzy truth value 

T(P) . 

 

Example : 

 

P: Ram is honest 

 

T(P) = 0.8 , means P is partially true. T(P) = 

1 , means P is absolutely true. 
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Sc – Fuzzy System – Fuzzy logic 

■  Fuzzy Connectives 
 

The fuzzy logic is similar to crisp logic supported by connectives. 

 

Table below illustrates the definitions of fuzzy connectives. 

 

 Table : Fuzzy Connectves 

Connective Symbols Usage Definition 

Nagation ¬ ¬ P 1 – T(P) 

Disjuction ∨ 

P 

∨ Q Max[T(P) , T(Q)] 

Conjuction ∧ 

P 

∧ Q min[T(P) , T(Q)] 

Implication ⇒ P ⇒ Q ¬P ∨  Q = max (1-T(P), T(Q)] 

 

Here P , Q are fuzzy proposition and T(P) , T(Q) are their truth values. 

 

− the P and Q are related by the ⇒ operator are known as antecedents 

and consequent respectively. 

 

− as  crisp  logic,  here  in  fuzzy logic  also  the  operator  ⇒ represents 

 

IF-THEN statement like, 

 

IF  x is  A  THEN  y is  B, is equivalent to 

 

R = (A x B) U (¬ A x Y) 

 

the membership function of R is given by 

 

R (x , y) = max [min (A (x) , B (y)) , 1 − A (x)] 
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− For the compound implication statement like 

 

IF x is A THEN y is B,  ELSE y is C  is equivalent to 

 

R = (A x B) U (¬ A x C) 

 

the membership function of R is given by 

 

R (x , y) = max [min (A (x) , B (y)) , min (1 − A (x), C (y))] 
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     Sc – Fuzzy System – Fuzzy logic 

Example 1 : (Ref : Previous slide)   

 P : Mary is efficient , T(P) = 0.8 , 

 Q : Ram is efficient , T(Q) = 0.65 , 

¬ P : Mary is efficient , T(¬ P) = 1 − T(P) = 1− 0.8 = 0.2 

P 

∧ Q : Mary is efficient and so is Ram,  i.e. 

  
T(P 

∧ Q) = min (T(P), T(Q)) = min (0.8, 0.65)) = 0.65 

P 

∨ Q : Either Mary or Ram is efficient i.e. 

  
T(P 

∨ Q) = max (T(P), T(Q)) = max (0.8, 0.65)) = 0.8 

 

P ⇒ Q : If Mary is efficient then so is Ram, i.e. 

 

T(P ⇒ Q) = max (1− T(P), T(Q)) = max (0.2, 0.65)) = 0.65 
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Sc – Fuzzy System – Fuzzy logic 

 

Example 2 : (Ref : Previous slide on fuzzy connective) 

 

Let X = {a, b, c, d}   ,   

 A = {(a, 0) (b, 0.8) (c, 0.6) (d, 1)} 

 B = {(1, 0.2) (2, 1) (3, 0.8) (4, 0)} 

 C = {(1, 0) (2, 0.4) (3, 1) (4, 0.8)} 

 

  = { 1, 2, 3, 4}  the universe of discourse could be viewed as 
 

{ (1, 1) (2, 1) (3, 1) (4, 1) } 

 

i.e., a fuzzy set all of whose elements x have (x) = 1 

 

Determine the implication relations 

 

• If x is A THEN y is B 
 

• If x is A THEN y is B  Else y is C 
 

Solution 

 

To determine implication relations (i) compute : 

 

The operator ⇒ represents  IF-THEN statement like, 

 

IF x is A THEN y is B, 

 

 

is equivalent to 

 

 

R = (A x B) U (¬ A x Y) 

 

 

and 

 

 

the membership function 

 

R 

 

is given by 

 

R (x , y) = max [min (A (x) , B (y)) , 1 − A (x)] 

 

Fuzzy Intersection A x B is defined as : Fuzzy Intersection ¬A x Y is defined as : 

 

 for all x in the set X 
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for all x in the set X, 

 

(A ∩  B)(x) = min [A(x), 

B(x)],   
(¬A ∩  Y)(x) = min [A(x), 

Y(x)],  
 

 

 

B 

 

1 2 3 4 

 

  

y 

 

1 2 3 4 

 

     
 

       
 

  

A 

         
 

         

A 

      
 

  

a 

 

0 0 0 0 

        
 

     

a 

  

1 1 1 1 
 

            
 

A x B =  b  0.2 0.8 0.8 0  ¬A x Y =   b  0.2 0.2 0.2 0.2 
 

  c  0.2 0.6 0.6 0   

c 

 

0.4 0.4 0.4 0.4 
 

           
 

  d  0.2 1 0.8 0   

d 

  

0 0 0 0 
 

            
 

Fuzzy Union is defined as (A ∪ 

     

all  x ∈  X 

 
 

B)(x) = max [A(x), B(x)] for  
 

Therefore R = (A x B) U (¬ A x Y) gives       
 

  

y 

 

1 2 3 4 

         
 

            
 

  x               
 

  a  1 1 1 1          
 

R = 

 b  0.2 0.8 0.8 0          
 

                
 

  c  0.4 0.6 0.6 0.4          
 

  d  0.2 1 0.8 0          
 

                 
 

 

 

This represents If x is A THEN y is B ie T(A ⇒ B) = max (1- T(A), T(B)) 
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To determine implication relations (ii) compute : (Ref : Previous slide) 

 

Given X = {a, b, c, d} ,   

A = {(a, 0) (b, 0.8) (c, 0.6) (d, 1)} 

B = {(1, 0.2) (2, 1) (3, 0.8) (4, 0)} 

C = {(1, 0) (2, 0.4) (3, 1) (4, 0.8)} 

 

Here, the operator ⇒ represents IF-THEN-ELSE statement like, 

IF x is A THEN y is B Else y is C, is equivalent to 

 

R = (A x B) U (¬ A x C)  and 

 

the membership function of R is given by 

 

R (x , y) = max [min (A (x) , B (y)) , min(1 − A (x), C (y)] 

 

Fuzzy Intersection A x B is defined as : Fuzzy Intersection ¬A x Y is defined as : 

for all x in the set X,     for all x in the set X     
 

(A ∩  B)(x) = min [A(x), 

B(x)],   
(¬A ∩  C)(x) = min [A(x), 

C(x)],  
 

  

B 

 

2 3 4 

   

y 

 

1 2 3 4 

 

  1     
 

  A       A       
 

  

a 0 0 0 0 

          

    a   0 0.4 1 0.8 
 

A x B =  b 0.2 0.8 0.8 0  ¬A x C =   b  0.2 0.2 0.2 0.2 
 

  c 0.2 0.6 0.6 0   c  0.4 0.4 0.4 0.4 
 

  d 0.2 1 0.8 0   d   0 0 0 0 
 

         

all  x ∈  X 

 
 

Fuzzy Union is defined as (A ∪ B)(x) = max [A(x), B(x)] for  
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Therefore R = (A x B) U (¬ A x C) gives       
 

  

y 

 

2 3 4 

         
 

  1          
 

  x              
 

  a 1 1 1 1          
 

R = 

 b 0.2 0.8 0.8 0          
 

               
 

  c 0.4 0.6 0.6 0.4          
 

  d 0.2 1 0.8 0          
 

                
 

 

 

This represents If x is A THEN y is B Else y is C 
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3 Fuzzy Quantifiers 
 

In crisp logic, the predicates are quantified by quantifiers. Similarly, in 

fuzzy logic the propositions are quantified by quantifiers. There are 

two classes of fuzzy quantifiers : 

 

− Absolute quantifiers 

and − Relative quantifiers 

 

Examples : 

 

Absolute quantifiers Relative quantifiers 

round about 250 almost 

much greater than 6 about 

some where around 20 most 
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ƒ  Fuzzification 
 

The fuzzification is a process of transforming crisp values into grades of 

membership for linguistic terms of fuzzy sets. 

 

The purpose is to allow a fuzzy condition in a rule to be interpreted. 

 

 Fuzzification of the car speed 
 

Example 1 : Speed X0  = 70km/h 

 

Fig below shows the fuzzification of 

low and a medium speed fuzzy set. 

 

1  

 Low Medium 
 

    
 

A 

  

B 

 

.8 

   
 

     
 

 

 

.6 

 

.4 

 

.2 

 

0 

 

20 40 60 80 100 120 140 

Speed X0 = 70km/h 

 

Characterizing two grades, low and 

medium speed fuzzy set 

 

Example 2 : Speed X0  = 

40km/h 

 

 

 

 

 

   

Medium 
  

  
 

V Low 

   

 
Low 

  

High 
 

V High 

 

   
 

1 

         
 

         
 

 

.8 

 

.6 

 

.4 

 

.2 

 

0 

10 20 30 40 50 60 70 80 90 00 

Speed X0 = 
40km/h 
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the car speed to characterize a 

 

 

 

Given car speed value X0=70km/h : grade 

A(x0) = 0.75 belongs to fuzzy low, and grade 

B(x0) = 0.25 belongs to fuzzy medium 

 

 

 

 

 

 

 

 

 

 

 

 

Given car speed value X0=40km/h : 

grade A(x0) = 0.6 belongs to fuzzy 

low, and grade B(x0) = 0.4 belongs 

to fuzzy medium. 

 

 

Characterizing five grades, Very low, 

low, medium, high and very high 

speed fuzzy set 
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  Fuzzy Inference 
 

Fuzzy Inferencing is the core element of a fuzzy system. 

 

Fuzzy Inferencing combines - the facts obtained from the fuzzification with the 

rule base, and then conducts the fuzzy reasoning process. 

 

Fuzzy Inference is also known as approximate reasoning. 

 

Fuzzy Inference is computational procedures used for evaluating linguistic 

descriptions. Two important inferring procedures are 

 

− Generalized Modus Ponens (GMP) 

− Generalized Modus Tollens (GMT) 
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• Generalized Modus Ponens (GMP) 
 

This is formally stated as 

 

If  x is A THEN y is B 

 

- is  ¬A 
 

- is  ¬B  

 

where A , B , ¬A , ¬B are fuzzy terms. 

 

Note : Every fuzzy linguistic statements above the line is analytically 

known and what is below the line is analytically unknown. 

 

To compute the membership function ¬B , the max-min composition of 

fuzzy set ¬A with R(x , y) which is the known implication relation (IF-

THEN) is used. i.e. ¬B = ¬A ο R(x, y) In terms of membership function 

 

 

 ¬B (y) = max (min (  ¬A (x) , 

 

 

 

R (x , y))) 

 

 

 

where 

 

 ¬A (x)is the membership function of ¬A ,
 

R (x , y) is the membership function of the implication relation and  

¬B (y) is the membership function of ¬B 
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■  Generalized Modus Tollens (GMT) 
 

This is formally stated as 

 

If x is A THEN y is B 

 

• is ¬B 

x is ¬A 
 

where A , B , ¬A , ¬B are fuzzy terms. 

 

Note : Every fuzzy linguistic statements above the line is analytically 

known and what is below the line is analytically unknown. 

 

To  compute  the  membership  function  ¬A ,  the  max-min  composition 

 

of fuzzy set ¬B with R(x , y) which is the known implication relation 

 

(IF-THEN) is used. i.e. ¬A = ¬B ο  R(x, y) 

 

In terms of membership function 

 

 ¬A (y) = max (min (  ¬B (x) , 

 

 

R (x , y))) 

 

 

where 

 

 ¬B (x)is the membership function of ¬B ,
 

R (x , y) is the membership function of the implication relation and  

¬A (y) is the membership function of ¬A 
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Example : 

 

Apply the fuzzy Modus Ponens rules to deduce Rotation is quite slow? 

 

Given : 

 

■  If the temperature is high then then the rotation is slow. 
 

■  The temperature is very high. 
 

Let H (High) , VH (Very High) , S (Slow) and QS (Quite Slow) indicate the 

associated fuzzy sets. 

 

Let the set for temperatures be X = {30, 40, 50, 60, 70, 80, 90, 100} , and 

Let the set of rotations per minute be Y = {10, 20, 30, 40, 50, 60} and 

 

H = {(70, 1) (80, 1) (90, 0.3)} 

 

VH = {(90, 0.9) (100, 1)} 

 

QS = {10, 1) (20, 08) } 

 

S = {(30, 0.8) (40, 1) (50, 0.6) 

 

To derive R(x, y) representing the implication relation (i) above, compute 

 

R (x, y) = max (H x S , ¬ H x Y) 

 

 10 20 30 40 50 60   10 20 30 40 50 60 
 

30 0 0 0 0 0 0 30 1 1 1 1 1 1 
 

40 0 0 0 0 0 0 40 1 1 1 1 1 1 
 

50 0 0 0 0 0 0 50 1 1 1 1 1 1 
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60 0 0 0 0 0 0 60 1 1 1 1 1 1 
 

        

70 

       

H x S =  70 0 0 0.8 1 0.6 0 

H x Y = 

0 0 0 0 0 0 

 

 
 

80 0 0 0.8 1 0.6 0 80 0 0 0 0 0 0 
 

90 0 0 0.3 0.3 0.3 0 90 0.7 0.7 0.7 0.7 0.7 0.7 
 

100 0 0 0 0 0 0 100 1 1 1 1 1 1 
 

 

 

 

  10 20 30 40 50 60 
 

 30 1 1 1 1 1 1 
 

 40 1 1 1 1 1 1 
 

 50 1 1 1 1 1 1 
 

 60 1 1 1 1 1 1 
 

R(x,Y) = 

70 0 0 0.8 1 0.6 0 
 

 
 

 80 0 0 0.8 1 0.6 0 
 

 90 0.7 0.7 0.7 0.7 0.7 0.7 
 

 100 1 1 1 1 1 1 
 

 

 

 

 

To deduce Rotation is quite slow, we make use of the composition rule 

 

QS = VH ο R (x, y)            
 

          10 20 30 40 50 60 
 

         30 1 1 1 1 1 1 
 

         40 1 1 1 1 1 1 
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         50 1 1 1 1 1 1 
 

= [0 0 0 0 0 0 0.9 1] x 
60 1 1 1 1 1 1 

 

70 0 0 0 0 0 0 

 

         
 

         80 0 0 0 0 0 0 
 

         90 0.7 0.7 0.7 0.7 0.7 0.7 
 

         100 1 1 1 1 1 1 
 

= [1 1 1 1 1 1 ]          
 

 

 

 

• Fuzzy Rule Based System 
 

The fuzzy linguistic descriptions are formal representation of systems made 

through fuzzy IF-THEN rule. They encode knowledge about a system in 

statements of the form : 

 

IF (a set of conditions) are satisfied THEN (a set of consequents) can be inferred. 

 

IF (x1 is A1, x2 is A2, xn is An ) THEN (y1 is B1, y2 is B2, yn is Bn) 

 

where linguistic variables xi, yj take the values of fuzzy sets Ai and Bj 

respectively. 

 

Example : 

 

IF 

 

 

there is "heavy" rain and "strong" winds 

 
 

THEN 

 

there must "severe" flood warnings. 
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Here, heavy , strong , and severe are fuzzy sets qualifying the variables 

wind, and flood warnings respectively. 

 

rain, 

 

A collection of rules referring to a particular system is known as a fuzzy 

 

rule base. If the conclusion C to be drawn from a rule base R is the 

conjunction of all the individual consequents C i of each rule , then 

 

C = C1 

 

∩ 

 

C2 

 

∩ . . . 

 

∩ Cn 

 

where 

 
 

c (y ) = min ( 

 

c1(y ), 

 

c2(y ) , 

 

cn(y )) , 

 

∀ 

 

y 

∈ 

 

Y 

 

where Y is universe of discourse. 

 

On the other hand, if the conclusion C to be drawn from a rule base R is the 

disjunction of the individual consequents of each rule, then 

C = C1 U C2 U . . . U  Cn where 

 

c (y ) = max ( 

 

 

c1 (y ), 

 

 

c2(y ) , 

 

 

cn (y )) , 

 

 

∀ 

 

 

y 

∈ 

 

 

Y where 

 

• is universe of discourse. 
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• Defuzzification 
 

In many situations, for a system whose output is fuzzy, it is easier to take a 

crisp decision if the output is represented as a single quantity. This conversion 

of a single crisp value is called Defuzzification. 

Defuzzification is the reverse process of fuzzification. 

The typical Defuzzification methods 

are − Centroid method, 

− Center of sums, − 

Mean of maxima. 

Centroid method 

 

It is also known as the "center of gravity" of area method. It 

obtains the centre of area (x*) occupied by the fuzzy set . 

For discrete membership function, it is given by 

 

Σn
  xi  (xi) 

i=1 

x* = where 

 

n 

Σ (xi) 

 

 

• represents the number elements in the sample, 

and xi are the elements, and 
 

 (xi) is the membership function. 
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Genetic Algorithms & Modeling 

 

 

What are GAs ? 

 

• Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on 

the evolutionary ideas of natural selection and genetics. 

 

• Genetic algorithms (GAs) are a part of Evolutionary computing, a rapidly 

growing area of artificial intelligence. GAs are inspired by Darwin's theory 

about evolution - "survival of the fittest". 

 

• GAs represent an intelligent exploitation of a random search used to solve 

optimization problems. 

 

• GAs, although randomized, exploit historical information to direct the 

search into the region of better performance within the search space. 

 

• In nature, competition among individuals for scanty resources results in 

the fittest individuals dominating over the weaker ones. 
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• Introduction 
 

Solving  problems  mean  looking  for solutions, which  is  best  among  others. 

Finding  the  solution  to  a  problem  is  often  thought : 

− In computer science and AI, as a process of search through the space of 

possible solutions. The set of possible solutions defines the search space 

(also called state space) for a given problem. Solutions or partial solutions 

are viewed as points in the search space. 

 

− In engineering and mathematics, as a process of optimization. The problems 

are first formulated as mathematical models expressed in terms of functions 

and then to find a solution, discover the parameters that optimize the model 

or the function components that provide optimal system performance. 

• Why Genetic Algorithms ? 

 

It is better than conventional AI ; It is more robust. 

j unlike  older AI  systems, the GA's do not  break  easily  even  if  the 
 

inputs changed slightly, or in the presence of reasonable noise. 

 

• while performing search in large state-space, multi-modal state-space, 

or n-dimensional surface, a genetic algorithms offer significant benefits 

over many other typical search optimization techniques like - linear 

programming, heuristic, depth-first, breath-first. 

 

"Genetic Algorithms are good at taking large, potentially huge search 

spaces and navigating them, looking for optimal combinations of things, 

the solutions one might not otherwise find in a lifetime.” Salvatore 

Mangano Computer Design, May 1995. 
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1.1 Optimization 

 

Optimization is a process that finds a best, or optimal, solution for a 

problem. The Optimization problems are centered around three factors : 

 

• An objective function : which is to be minimized or maximized; 

Examples: 
 

 In manufacturing, we want to maximize the profit or minimize the 

cost . 
 

 In designing an automobile panel, we want to maximize the 

strength. 
 

• A set of unknowns or variables : that affect the objective function, 

Examples: 
 

 In manufacturing, the variables are amount of resources used or 

the time spent. 
 

 In panel design problem, the variables are shape and dimensions 

of the panel. 
 

• A set of constraints : that allow the unknowns to take on certain values 

but exclude others; 

Examples: 

 

1. In manufacturing, one constrain is, that all "time" variables to be 

non-negative. 

 

• In the panel design, we want to limit the weight and put constrain 

on its shape. 

 

An optimization problem is defined as : Finding values of the variables 

that minimize or maximize the objective function while satisfying the 

constraints. 
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• Optimization Methods 
 

Many optimization methods exist and categorized as shown below. The 

suitability of a method depends on one or more problem characteristics to 

be optimized to meet one or more objectives like : 

 

− low cost, 

− high performance, 

− low loss 

These characteristics are not necessarily obtainable, and requires 

knowledge about the problem. 

 

 

Optimization 

Methods 

 

 

 

Linear Non-Linear 

Programming Programming 

 

        

        

Classical  Enumerative  Stochastic 

Methods  Methods  Methods 

        

 

Fig. Optimization Methods 

 

Each of these methods are briefly discussed indicating the nature of the 

problem they are more applicable. 
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■  Linear Programming 

 
 

 
 

Intends to  obtain  the  optimal  solution to  problems   that   are 
 

perfectly represented  by  a  set  of  linear  equations;  thus  require 
 

a  priori knowledge  of  the  problem.  Here the 
 

− the functions to be minimized or maximized, is called objective 

functions, 

− the  set  of  linear  equations  are  called restrictions. 

− the optimal solution, is the one that minimizes (or maximizes) the 

objective function. 

Example : “Traveling salesman”, seeking a minimal traveling distance. 

 

■ Non- Linear Programming 
 

Intended for problems described by non-linear equations. 

The methods are divided in three large groups: 

 

Classical,  Enumerative  and   Stochastic. 

 

Classical search uses deterministic approach to find best solution. These 

methods requires knowledge of gradients or higher order derivatives. In 

many practical problems, some desired information 

are not available, means  deterministic  algorithms  are  inappropriate. 

 

The techniques  are  subdivide  into: 

 

− Direct methods, e.g. Newton or Fibonacci − 

Indirect methods. 
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Enumerative search goes through every point (one point at a time ) 

related to the function's domain space. At each point, all possible 

solutions are generated and tested to find optimum solution. It is easy to 

implement but usually require significant computation. In the field of 

artificial intelligence, the enumerative methods are subdivided into two 

categories: 

 

− Uninformed methods, e.g. Mini-Max algorithm 

− Informed methods, e.g. Alpha-Beta and A* , 

 

Stochastic search deliberately introduces randomness into the search 

process. The injected randomness may provide the necessary impetus to 

move away from a local solution when searching for a global optimum. 

e.g., a gradient vector criterion for “smoothing” problems. Stochastic 

methods offer robustness quality to optimization process. Among the 

stochastic techniques, the most widely used are : 

 

− Evolutionary Strategies (ES), 

− Genetic Algorithms (GA), and 

− Simulated Annealing (SA). 

 

The ES and GA emulate nature’s evolutionary behavior, while SA is 

based on the physical process of annealing a material. 
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1.2 Search Optimization 

 

Among the three Non-Linear search methodologies, just mentioned 

 

in the previous slide, our immediate concern is Stochastic  search 

 

which  means 

 

− Evolutionary Strategies (ES), − 

Genetic Algorithms (GA), and − 

Simulated Annealing (SA). 

 

 

The two other search methodologies, shown below, the Classical and the 

Enumerative methods, are first briefly explained. Later the Stochastic 

methods are discussed in detail. All these methods belong to Non-Linear 

search. 

 

 

Search 

Optimization 

 

 

 

Classical 
 

 

 
Enumerative 

 

Stochastic Search 
 

Search  (Guided Random Search)  Search 
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Evolutionary  Genetic  Simulated 

Strategies  Algorithms  Annealing 

(ES)  (GA)  (ES) 

     

 

Fig Non- Linear search methods 
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- Classical or Calculus based search 
 

Uses deterministic approach to find best solutions of an optimization 

problem. 

 

− the solutions satisfy a set of necessary and sufficient conditions of the 

optimization problem. 

 

− the  techniques  are  subdivide  into direct and  indirect methods. 

 

 Direct or Numerical methods  : 
 

− example : Newton or Fibonacci, 

 

− tries to find extremes by "hopping" around the search space 

and assessing the gradient of the new point, which guides the 

search. 

 

− applies  the  concept of "hill climbing", and finds the best 

 

local  point  by  climbing  the  steepest  permissible  gradient. 

 

− used  only on a  restricted  set  of "well behaved" functions. 

 

• Indirect methods : 
 

− does search for local extremes by solving usually non-linear 

set of equations resulting from setting the gradient of the 

objective function to zero. 

 

− does search for possible solutions (function peaks), starts by 

restricting  itself  to  points  with  zero  slope in all directions. 
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■  Enumerative Search 
 

Here the search goes through every point (one point at a time) related to 

the function's domain space. 

 

− At each point, all possible solutions are generated and tested to find 

optimum solution. 

 

− It is easy to implement but usually require significant computation. 

Thus these techniques are not suitable for applications with large 

domain spaces. 

 

In the field of artificial intelligence, the enumerative methods are 

subdivided into two categories : Uninformed and Informed methods. 

 

• Uninformed  or  blind methods : 
 

− example:  Mini-Max algorithm, 

 

− search  all  points  in  the  space  in  a  predefined order, 

 

− used in game playing. 

 

• Informed methods : 
 

− example: Alpha-Beta and A* , 

 

− does  more  sophisticated  search 

 

 

− uses domain specific knowledge in the form of a cost function 

or heuristic to reduce cost for search. 



397 
 

 

Next slide shows,  the  taxonomy  of  enumerative  search  in  AI  domain. 

 

12 
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[Ref : previous slide Enumerative search] 

 

The Enumerative search techniques follows, the traditional search and 

control strategies, in the domain of Artificial Intelligence. 

 

− the search methods explore the search space "intelligently";  means 

 

evaluating  possibilities  without  investigating  every  single possibility. 

 

− there  are many control structures  for search;  the  depth-first  search 

 

and  breadth-first  search  are  two  common  search  strategies. 

 

− the  taxonomy  of search  algorithms in  AI domain is given  below. 

 

 

 

Enumerative Search 

G (State, Operator, Cost) 

 

No h(n) present User heuristics h(n) 

 

   Uninformed Search         Informed Search    
 

                                

 LIFO Stack FIFO    Priority                 
 

           Queue: g(n)                 
 

                         
 

 Depth-First  Breadth-First   Cost-First   Generate      Hill  
 

 Search   Search    Search   -and-test    
Climbin

g  
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  Impose fixed 

Priority 

                  
 

  

depth limit 

                  
 

   

Queue: h(n) 

                
 

                        
 

                             

 

Depth 

                           
 

         

Best first 

 

Problem 

 

Constraint 

 

Mean-end- 

 

 

Limited 

           
 

       

search 

 

Reduction 

 satisfactio

n 

 

analysis 

 

 

Search 

           
 

                            
 

     

Priority Queue: 

                
 

                         

  

Gradually increase 

                
 

  f(n)=h(n)+g(n                 
 

  fixed depth limit                        
 

           

A* 
Search   AO* Search  

         
 

 

Iterative 

                
 

                          
 

 Deepening                            
 

 DFS                          
 

 

 

Fig. Enumerative Search Algorithms in AI Domain 
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• Stochastic Search 
 

Here the search methods, include heuristics and an element of 

randomness (non-determinism) in traversing the search space. Unlike 

 

the  previous  two  search  methodologies 

 

− the  stochastic  search algorithm  moves from one point  to another in 

 

the search space in a non-deterministic  manner, guided  by  heuristics. 

 

− the stochastic search techniques are usually called Guided random 

search techniques. 

 

The stochastic search techniques are grouped into  two major subclasses : 

 

− Simulated  annealing and 

 

− Evolutionary algorithms. 

 

Both  these  classes  follow  the  principles  of evolutionary  processes. 

 

• Simulated annealing (SAs) 
 

− uses a thermodynamic evolution process to search minimum 

energy states. 

 

• Evolutionary algorithms (EAs) 
 

− use  natural  selection  principles. 
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− the search evolves throughout generations, improving the 

features of potential solutions by means of biological inspired 

operations. 

 

− Genetic Algorithms (GAs) are a good example of this 

technique. 

 

The next slide shows, the taxonomy of evolutionary search algorithms. It 

includes the other two search, the Enumerative search and Calculus based 

techniques, for better understanding of Non-Linear search methodologies 

in its entirety. 
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• Taxonomy of Search Optimization 
 

Fig. below  shows different types of Search  Optimization  algorithms. 
 

 

Search 

Optimization 

 

 

 

Calculus  Guided Random Search  Enumerative 

Based  techniques  Techniques 

Techniques       

 

 

Indirect 

method 

 

 

Direct 

method 

 

 

Uninformed Informed 

 

Search Search 

 

 

 Newton  Finonacci     

          

Tabu   Hill   Simulated  Evolutionary 

Search  Climbing   Annealing  Algorithms 

          

 

 

 

Genetic Genetic 

Programming Algorithms 
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Fig. Taxonomy of Search Optimization techniques 

 

 

We are interested in Evolutionary search algorithms. 

 

Our  main  concern  is  to  understand  the  evolutionary  algorithms : 

 

- how to describe the process of search, 
 

- how to implement and carry out search, 
 

- what are the elements required to carry out search, and 

 

- the different search strategies 
 

 

The  Evolutionary Algorithms  include : 

 

- Genetic  Algorithms and 

 

- Genetic  Programming 

 

15 
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1.3 Evolutionary Algorithm (EAs) 

 

Evolutionary Algorithm (EA) is a subset of Evolutionary Computation (EC) 

which is a subfield of Artificial Intelligence (AI). 

 

Evolutionary Computation (EC) is a general term for several computational 

techniques. Evolutionary Computation represents powerful search and 

optimization paradigm influenced by biological mechanisms of evolution : that 

of natural selection and genetic. 

 

Evolutionary Algorithms (EAs) refers to Evolutionary Computational 

 

models using randomness and genetic inspired operations. EAs involve 

selection, recombination, random variation and competition of the 

individuals in a population of adequately represented potential solutions. 

The candidate solutions are referred as chromosomes or individuals. 

 

Genetic Algorithms (GAs) represent the main paradigm of Evolutionary 

Computation. 

 

• GAs simulate natural evolution, mimicking processes the nature uses : 

Selection, Crosses over, Mutation and Accepting. 
 

• GAs simulate the survival of the fittest among individuals over 

consecutive generation for solving a problem. 

 

Development History 

 

EC = GP + ES + EP + GA 
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Evolutionary  Genetic  Evolution  Evolutionary  Genetic 

Computing  Programming  Strategies  Programming  Algorithms 

Rechenberg  Koza  Rechenberg  Fogel  Holland 

1960  1992  1965  1962  1970 
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1.4 Genetic Algorithms (GAs) - Basic Concepts 

 

Genetic algorithms (GAs) are the main paradigm of evolutionary 

computing. GAs are inspired by Darwin's theory about evolution – the 

"survival of the fittest". In nature, competition among individuals for 

scanty resources results in the fittest individuals dominating over the 

weaker ones. 

 

− GAs are the ways of solving problems by mimicking processes nature 

uses; ie., Selection, Crosses over, Mutation and Accepting, to evolve a 

solution to a problem. 

 

− GAs are adaptive heuristic search based on the evolutionary ideas of 

natural selection and genetics. 

 

− GAs are intelligent exploitation of random search used in optimization 

problems. 

 

− GAs, although randomized, exploit historical information to direct the 

search into the region of better performance within the search space. 

 

The biological background (basic genetics), the scheme of evolutionary 

processes, the working principles and the steps involved in GAs are 

illustrated in next few slides. 
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■  Biological Background – Basic Genetics 
 

 Every organism has a set of rules, describing how that organism is 

built. All living organisms consist of cells. 
 

 In each cell there is same set of chromosomes. Chromosomes are 

strings of DNA and serve as a model for the whole organism. 
 

 A chromosome consists of genes, blocks of DNA. 
 

 Each gene encodes a particular protein that represents a trait 

(feature), e.g., color of eyes. 
 

 Possible settings for a trait (e.g. blue, brown) are called alleles. 
 

 Each gene has its own position in the chromosome called its locus. 
 

 Complete set of genetic material (all chromosomes) is called a 

genome. 
 

 Particular set of genes in a genome is called genotype. 
 

 The physical expression of the genotype (the organism itself after 

birth) is called the phenotype, its physical and mental characteristics, 

such as eye color, intelligence etc. 
 

 When two organisms mate they share their genes; the resultant 

offspring may end up having half the genes from one parent and half 

from the other. This process is called recombination (cross over) . 
 

 The new created offspring can then be mutated. Mutation means, that 

the elements of DNA are a bit changed. This changes are mainly 

caused by errors in copying genes from parents. 
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 The fitness of an organism is measured by success of the organism in 

its life (survival). 
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SC – GA - Introduction 

[ continued from previous slide - Biological background ] 

 

Below shown, the general scheme of evolutionary process in genetic along 

with pseudo-code. 

 

Parents 

 

Parents 

Initialization 

 
 

Recombination 

Population 

 

 

Mutation 

 

Termination 

Offspring 

 

Survivor 

 

Fig. General Scheme of Evolutionary process 

 

 

Pseudo-Code 

 

BEGIN 

 

INITIALISE  population with random candidate solution. 

 

EVALUATE each candidate; 
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REPEAT UNTIL  (termination condition ) is satisfied DO 

 

■  SELECT parents; 
 

■  RECOMBINE  pairs of parents; 
 

■  MUTATE  the resulting offspring; 
 

■  SELECT  individuals or the next generation; 
 

END. 
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SC – GA - Introduction 

• Search Space 
 

In solving problems, some solution will be the best among others. The 

space of all feasible solutions (among which the desired solution 

 

resides)  is called search space (also called state space). 

 

− Each  point  in the  search space  represents  one possible solution. 

 

− Each possible solution can be "marked" by its value (or fitness) for the 

problem. 

 

− The GA looks for the best solution among a number of possible 

solutions represented by one point in the search space. 

 

− Looking for a solution is then equal to looking for some extreme value 

(minimum or maximum) in the search space. 

 

− At times the search space may be well defined, but usually only a few 

points in the search space are known. 

 

In using GA, the process of finding solutions generates other points 

(possible solutions) as evolution proceeds. 
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SC – GA - Introduction 

- Working Principles 
 

Before  getting  into  GAs,  it is necessary  to explain  few  terms. 

 

− Chromosome : a set of genes; a chromosome contains the solution in 

form of genes. 

 

− Gene : a part of chromosome; a gene contains a part of solution. It 

determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4 

and 3 are its genes. 

 

− Individual :  same as  chromosome. 

 

− Population: number of individuals present with same length of 

chromosome. 

 

− Fitness : the value assigned to an individual based on how far or close a 

individual is from the solution; greater the fitness value better the 

solution it contains. 

 

− Fitness function : a function that assigns fitness value to the individual. 

It is problem specific. 

 

− Breeding  :  taking  two  fit  individuals  and  then  intermingling  there 

 

chromosome  to  create new two individuals. 

 

− Mutation : changing  a  random  gene  in  an  individual. 

 

− Selection :  selecting individuals  for  creating  the next  generation. 

 

Working principles : 
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Genetic algorithm begins with a set of solutions (represented by 

chromosomes) called the population. 

 

− Solutions from one population are taken and used to form a new 

population. This is motivated by the possibility that the new population 

will be better than the old one. 

 

− Solutions are selected according to their fitness to form new solutions 

(offspring); more suitable they are, more chances they have to 

reproduce. 

 

− This is repeated until some condition (e.g. number of populations or 

improvement of the best solution) is satisfied. 
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SC – GA - Introduction 

■  Outline of the Basic Genetic Algorithm 
 

 [Start] Generate random population of n chromosomes (i.e. suitable 

solutions for the problem). 
 

 [Fitness] Evaluate the fitness f(x) of each chromosome x in the 

population. 
 

 [New population] Create a new population by repeating following steps 

until the new population is complete. 
 

 [Selection] Select two parent chromosomes from a population 

according to their fitness (better the fitness, bigger the chance to 

be selected) 
 

 [Crossover] With a crossover probability, cross over the parents to 

form new offspring (children). If no crossover was performed, 

offspring is the exact copy of parents. 
 

 [Mutation] With a mutation probability, mutate new offspring at 
 

each  locus  (position in chromosome). 

 

(d) [Accepting]  Place  new offspring  in  the  new  population 

 

• [Replace] Use new generated population for a further run of the 

algorithm 
 

• [Test] If the end condition is satisfied, stop, and return the best 

solution in current population 
 

• [Loop]  Go to step 2 

 

Note : The genetic algorithm's performance is largely influenced by two 

operators called crossover and mutation. These two operators are the 

most important parts of GA. 
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SC – GA - Introduction 

■  Flow chart for Genetic Programming 
 

Start 
 

 

 

    Seed Population  

Genesis 

 

   Generate N individuals 
 

           
 

           
 

   Scoring : assign fitness      
 

   to each individual       
 

           
 

           
 

  Natural Select two individuals      
 

  Selection (Parent 1 Parent 2)       
 

             No 
 

           
 

 Reproduction Use crossover operator 

Crossover 

 

 Recombination to produce off- springs 
 

           
 

   Scoring : assign fitness    Crossover  
 

    to off- springs     Finished?  
 

             

Yes 

 

 

Survival of Fittest 

         
 

            
 

    

Yes 

 

No 

 

Natural Select one off-spring 

 

 Apply replacement    
 

 

operator to incorporate 

    

Selection 
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 new individual into            
 

  

population 

            
 

           

Apply Mutation operator 

 

            
 

         Mutation to produce Mutated 
 

No           offspring 
 

               
 

  Terminate?             
 

           

 
Scoring : assign 

 

        Mutation 
 

  

Yes 

     

Finished? 

 

fitness to off- spring 

 

 

 

     

 

 

          
 

               
 

 

 

Finish 

 

 

Fig. Genetic Algorithm – program flow chart 
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SC – GA - Encoding 

◊ Encoding 
 

Before a genetic algorithm can be put to work on any problem, a method is 

needed to encode potential solutions to that problem in a form so that a 

computer can process. 

 

− One common approach is to encode solutions as binary strings: sequences of 

1's and 0's, where the digit at each position represents the value of some 

aspect of the solution. 

 

Example : 

 

A Gene represents some data (eye color, hair color, sight, etc.). 

 

 

a Gene looks  like : (11100010)   

a Chromosome looks like: Gene1 Gene2 Gene3 Gene4 

 (11000010, 00001110, 001111010, 10100011) 

 

A chromosome should in some way contain information about solution 

which it represents; it thus requires encoding. The most popular way of 

encoding is a binary string like : 

 

Chromosome 1 : 1101100100110110 

 

Chromosome 2 : 1101111000011110 

 

Each  bit in  the string  represent some characteristics of the solution. 

 

− There are many other ways of encoding, e.g., encoding values as integer or 

real numbers or some permutations and so on. 
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− The virtue of these encoding method depends on the problem to work on . 
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SC – GA - Encoding 

■  Binary Encoding 
 

Binary encoding is the most common to represent information contained. 

In genetic algorithms, it was first used because of its relative simplicity. 

 

− In binary encoding, every chromosome is a string of bits : 0 or 1,  like 

 

Chromosome 1: 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 

 

Chromosome 2: 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 

 

− Binary encoding gives many possible chromosomes even with a small 

number of alleles ie possible settings for a trait (features). 

 

− This encoding is often not natural for many problems and sometimes 

corrections must be made after crossover and/or mutation. 

 

Example 1: 

 

One  variable  function, say   0 to  15 numbers, numeric  values, 

represented by 4 bit binary string.       

          

 Numeric 4–bit Numeric 4–bit  Numeric  4–bit  

 value string value string  value  string  

          

 0 0 0 0 0 6 0 1 1 0  12  1 1 0 0  

          

 1 0 0 0 1 7 0 1 1 1  13  1 1 0 1  
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 2 0 0 1 0 8 1 0 0 0  14  1 1 1 0  

          

 3 0 0 1 1 9 1 0 0 1  15  1 1 1 1  

          

 4 0 1 0 0 10 1 0 1 0      

          

 5 0 1 0 1 11 1 0 1 1      
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SC – GA - Encoding 

[ continued binary encoding ] 

 

Example 2 : 

 

Two variable function represented by 4 bit string for each variable. 

 

Let two variables X1 , X2 as (1011 0110) . 

 

Every variable will have both upper and lower limits as X i
L ≤ Xi ≤ Xi

U 

Because 4-bit string can represent integers from 0 to 15, 

 

so  (0000 0000) and (1111 1111) represent the points for X1 , X2 as 

( X1
L
  , X2

L
  )  and ( X1

U
  , X2

U
   )  respectively. 

Thus, an n-bit string  can represent integers from 

0 to 2
n
 -1, i.e. 2n integers. 

 

    Binary Coding   Equivalent integer 
 

                     
 

2 

 

10 
 

Remainder 

1 0 1 0 

   

0 

 
 

     
 

            
 

2 

 

5 0 

            

0 x 2 = 0 

 

             
 

             

   

 

1 x 2
1 

  

2 

 

2 1 

        

= 2 
 

            
 

              

   

 
0 x 2

2 

 
 

    

1 0 
        

= 0 
 

                

              

   

 
1 x 2

3
 = 8 

 

              
 

                 
 

                    10 
 

 

 

Decoded binary substring 

 

Let Xi is coded as a substring 

Si of length ni. Then decoded 

binary substring Si is as 

K=ni - 1 

Σ 2 
k
 S k 

k=0 

 

where Si can be 0 or 1 and the 

string S is represented as 

 

Sn-1 . . . . S3 S2 S1 S0 

 

 

Example : Decoding value 
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Consider a  4-bit  string (0111), 

 

− the decoded value is equal to 

 

23  x 0 + 22  x 1 + 21  x 1 + 20 x 1 = 7 

− Knowing X L and X 
U

 corresponding to (0000) and (1111) , 
 

i  i     
 

the equivalent value for any 4-bit string can be obtained as 
 

 

=Xi
L

 

 (Xi
U

 − Xi
L

 )  
 

Xi + --------------- x (decoded value of string) 
 

   ( 2
ni

 − 1 )   
 

 

− For e.g. a variable Xi ;  let Xi
L  = 2 , and Xi

U  = 17, find what value the 

4-bit string Xi = (1010) would represent. First get decoded value for 

 

Si = 1010 = 23 x 1 + 22 x 0 + 21  x 1 + 20 x 0 = 10  then 

 (17 -2) 

Xi = 2 + ----------- x 10 = 12 

 (24  - 1) 

 

The accuracy obtained with a 4-bit code is 1/16 of search space. 

 

By increasing the string length by 1-bit , accuracy increases to 1/32. 
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SC – GA - Encoding 

- Value Encoding 
 

The Value encoding can be used in problems where values such as real 

numbers are used. Use of binary encoding for this type of problems would 

be difficult. 

 

 In value encoding, every chromosome is a sequence of some values. 
 

 The Values can be anything connected to the problem, such as 

: real numbers, characters or objects. 
 

Examples : 

 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

 

- Value encoding is often necessary to develop some new types of 

crossovers and mutations specific for the problem. 
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SC – GA - Encoding 

- Permutation Encoding 
 

Permutation encoding can be used in ordering problems, such as traveling 

salesman problem or task ordering problem. 

 

 In permutation encoding, every chromosome is a string of numbers 
 

that  represent  a  position  in  a  sequence. 

 

Chromosome A 1 5 3 2 6 4 7 9 8 

 

Chromosome B 8 5 6 7 2 3 1 4 9 

 

ƒ  Permutation encoding is useful for ordering problems. For some 

problems, crossover and mutation corrections must be made to leave 

the chromosome consistent. 

 

Examples : 

 

1. The Traveling Salesman problem: 
 

There are cities and given distances between them. Traveling 

salesman has to visit all of them, but he does not want to travel more 

than necessary. Find a sequence of cities with a minimal traveled 

distance. Here, encoded chromosomes describe the order of cities the 

salesman visits. 

 

2. The Eight Queens problem : 
 

There are eight queens. Find a way to place them on a chess board so 

that no two queens attack each other. Here, encoding describes the 

position of a queen on each row. 
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• Tree Encoding 
 

Tree encoding is used mainly for evolving programs or 

expressions. For genetic programming : 

 

− In tree encoding, every chromosome is a tree of some objects, such as 

functions or commands in programming language. 

 

− Tree encoding is useful for evolving programs or any other structures 

that can be encoded in trees. 

 

− The  crossover  and  mutation  can be  done  relatively  easy way . 

 

Example : 

 

Chromosome A Chromosome  B 
 

 
     

 

+ 

    
 

   

do untill 

 
 

     
 

      
 

 

 

x / 

 

step wall 

 

5 y 

 

( + x ( / 5 y ) ) ( do until step wall ) 

 

Fig. Example of Chromosomes with tree encoding 



428 
 

 

Note : Tree encoding is good for evolving programs. The programming 

language LISP is often used. Programs in LISP can be easily parsed as a 

tree, so the crossover and mutation is relatively easy. 
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SC – GA - Operators 

3. Operators of Genetic Algorithm 

 

Genetic operators used in genetic algorithms maintain genetic diversity. 

 

Genetic  diversity or variation  is a necessity for the process of evolution. 

 

Genetic  operators  are  analogous  to  those  which occur in the natural world: 

 

− Reproduction (or Selection) ; 

 

− Crossover (or Recombination); and 

 

− Mutation. 

 

In addition to these operators, there are some parameters of GA. 

 

One important  parameter  is Population size. 

 

− Population size says how many chromosomes are in population (in one 

generation). 

 

− If there are only few chromosomes, then GA would have a few possibilities 

to perform crossover and only a small part of search space is explored. 

 

− If there are many chromosomes, then  GA slows down. 

 

− Research shows that after some limit, it is not useful to increase population 

size, because it does not help in solving the problem faster. The population 

size depends on the type of encoding and the problem. 
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SC – GA - Operators 

3.1 Reproduction, or Selection 

 

Reproduction is usually the first operator applied on population. From the 

population, the chromosomes are selected to be parents to crossover and 

produce offspring. 

 

The problem is how to select these chromosomes ? 

 

According to Darwin's evolution theory "survival of the fittest" – the best 

ones should survive and create new offspring. 

 

− The  Reproduction operators  are  also  called  Selection operators. 

 

− Selection means extract a subset of genes from an existing population, 

according to any definition of quality. Every gene has a meaning, so 

one can derive from the gene a kind of quality measurement called 

fitness function. Following this quality (fitness value), selection can be 

performed. 

 

− Fitness function quantifies the optimality of a solution (chromosome) so 

that a particular solution may be ranked against all the other solutions. 

The function depicts the closeness of a given ‘solution’ to the desired 

result. 

 

Many reproduction operators exists and they all essentially do same thing. 

They pick from current population the strings of above average and insert 

their multiple copies in the mating pool in a probabilistic manner. 

 

The most commonly used methods of selecting chromosomes for parents 

to crossover are : 
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− Roulette wheel selection, 

− Boltzmann selection, − 

Tournament selection, 

 

 

− Rank selection 

 

− Steady state selection. 

 

 

The Roulette wheel and Boltzmann selections methods are illustrated next. 
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SC – GA - Operators 

 

• 

 

Example of Selection 

 

 

Evolutionary Algorithms  is 

 

the integer interval [0 , 31], 

 

 

to maximize the function f(x) = x2 

i.e., x = 0, 1, . . . 30, 31. 

 

 

with x 

 

 

in 

 

• The first step is encoding of chromosomes; use binary representation 

for integers; 5-bits are used to represent integers up to 31. 
 

• Assume that the population size is 4. 
 

• Generate initial population at random. They are chromosomes or 

genotypes; e.g., 01101, 11000, 01000, 10011. 
 

• Calculate  fitness  value for each individual. 
 

• Decode the individual into an integer (called phenotypes), 
 

01101 → 13; 11000 → 24; 01000 → 8; 10011 → 19; 

 

− Evaluate the fitness according to f(x) = x2 , 
 

13 → 169; 24 → 576; 8 → 64; 19 → 361. 

 

4. Select parents (two individuals) for crossover based on their fitness in 

pi. Out of many methods for selecting the best chromosomes, if 

roulette-wheel selection is used, then the probability of the i 
th

 string 

n 

in the population is pi  = F i  / (Σ F j ) , where 

j=1 

 

F i  is fitness for the string i in the population, expressed as f(x) 

 

pi is probability of the string i being selected, 
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4. is no of individuals in the population, is population size, n=4 

n * pi is expected count 

 

String No Initial X value Fitness Fi p i Expected count 

 Population  f(x) = x2  N * Prob i 

      

1 0 1 1 0 1 13 169 0.14 0.58 

      

2 1 1 0 0 0 24 576 0.49 1.97 

      

3 0 1 0 0 0 8 64 0.06 0.22 

      

4 1 0 0 1 1 19 361 0.31 1.23 

      

Sum   1170 1.00 4.00 

      

Average   293 0.25 1.00 

      

Max   576 0.49 1.97 

      

 

The string no 2 has maximum chance of  selection. 
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SC – GA - Operators 

• Roulette wheel selection (Fitness-Proportionate Selection) 
 

Roulette-wheel selection, also known as Fitness Proportionate Selection, is 

a genetic operator, used for selecting potentially useful solutions for 

recombination. 

 

In fitness-proportionate selection : 

 

− the chance of an individual's being   selected is proportional to its 

 

fitness,  greater  or  less  than its  competitors'  fitness. 

 

− conceptually,  this  can  be  thought  as  a game  of  Roulette. 

 

 

 1  
 

8 

5% 

2 

 

 
 

20%  9% 
 

  3 
 

7 

 13% 
 

  
 

8%   
 

6   
 

8%  

17% 
 

  
 

  4 
 

 20%  
 

 5  
 

 

 

Fig. Roulette-wheel Shows 

8 

individual with fitness 
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The Roulette-wheel simulates 8 individuals 

with fitness values Fi, marked at its 

circumference; e.g., 

 

− the 5
th

  individual   has   a   higher 

fitness  than  others,  so  the  wheel 

 

would choose the 5
th

 individual more 

than other individuals . 

 

− the  fitness  of  the  individuals  is 

 

calculated as the  wheel  is  spun 

n = 8 times, each time selecting 

an instance,  of  the  string,  chosen 

by the wheel pointer. 

 

Probability of i 
th

  string  is pi  = F i  / (Σn
 F j ) ,  where 

 

j=1 

 

• = no of individuals, called population size; pi = probability of i
th

 

string being selected; Fi = fitness for i
th

 string in the population. 

Because the  circumference of the  wheel  is marked  according to 
 

a  string's fitness, the Roulette-wheel mechanism is expected to 
 

make 

F 

copies of the ith  string. 

 
 

     
 

  F          
 

Average fitness = 

  

F j / n ; Expected count = (n =8 ) x pi 

 
 

F  
 

         N=5    
 

Cumulative Probability5 = Σ pi   
 

i=1 
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• Boltzmann Selection 
 

Simulated annealing is a method used to minimize or maximize a function. 

 

− This method simulates the process of slow cooling of molten metal to 

achieve the minimum function value in a minimization problem. 

 

− The cooling phenomena is simulated by controlling a temperature like 

parameter introduced with the concept of Boltzmann probability 

distribution. 

 

− The system in thermal equilibrium at a temperature T has its energy 

distribution based on the probability defined by 

 

P(E) = exp ( - E / kT ) were  k is  Boltzmann constant. 

 

− This expression suggests  that a system at a higher temperature has 

 

almost uniform probability at any energy state, but at lower 

temperature it has a small probability of being at a higher energy state. 

 

− Thus, by controlling the temperature T and assuming that the search 

process follows Boltzmann probability distribution, the convergence of 

the algorithm is controlled. 
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SC – GA - Operators 

3.2 Crossover 

 

Crossover is a genetic operator that combines (mates) two chromosomes 

(parents) to produce a new chromosome (offspring). The idea behind 

crossover is that the new chromosome may be better than both of the 

parents if it takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable crossover 

probability. Crossover selects genes from parent chromosomes and 

creates a new offspring. 

 

The Crossover operators are of many types. 

 

− one simple way is,  One-Point crossover. 

 

− the others are Two Point, Uniform, Arithmetic, and Heuristic crossovers. 

 

The operators are selected based on the way chromosomes are encoded. 

 

 

35 



439 
 

SC – GA - Operators 

• One-Point Crossover 
 

One-Point crossover operator randomly selects one crossover point and 

then copy everything before this point from the first parent and then 

everything after the crossover point copy from the second parent. The 

Crossover would then look as shown below. 

 

Consider the two parents selected for crossover. 

 

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0 

 

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0 

 

 

Interchanging the parents chromosomes after the crossover points - 

 

The Offspring produced are : 

 

Offspring 1 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0 

 

Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0 

 

Note :  The symbol,  a vertical line, | is the chosen crossover point. 
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SC – GA - Operators 

► Two-Point Crossover 
 

Two-Point crossover operator randomly selects two crossover points within 

a chromosome then interchanges the two parent chromosomes between 

these points to produce two new offspring. 

 

Consider the two parents selected for crossover : 

 

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 

 

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 | 1 1 1 0 

 

 

Interchanging  the  parents  chromosomes between the crossover points - 

 

The Offspring produced are : 

 

Offspring 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 

 

Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 
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SC – GA - Operators 

► Uniform Crossover 
 

Uniform crossover operator decides (with some probability – know as the 

mixing ratio) which parent will contribute how the gene values in the 

offspring chromosomes. The crossover operator allows the parent 

chromosomes to be mixed at the gene level rather than the segment level 

(as with one and two point crossover). 

 

Consider the two parents selected for crossover. 

 

Parent 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 
 

Parent 2 

                
 

1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 
 

                 
 

 

If the mixing ratio is 0.5 approximately, then half of the genes in the 

offspring will come from parent 1 and other half will come from parent 2. 

The possible set of offspring after uniform crossover would be: 

 

Offspring 1 11 12 02 11 11 12 12 02 01 01 02 11 12 11 11 02  
 

Offspring 2 

                

 

 

12 11 01 12 12 01 01 11 02 02 11 12 01 12 12 01 
 

                  
 

Note:  The subscripts indicate which parent the gene came  from. 
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• Arithmetic 
 

Arithmetic crossover operator linearly combines two parent chromosome 

vectors to produce two new offspring according to the equations: 

 

Offspring1 = a * Parent1 + (1- a) * Parent2 

Offspring2 = (1 – a) * Parent1 + a * Parent2 

 

where a is a random weighting factor chosen before each crossover 

operation. 

 

Consider  two  parents (each of 4 float genes) selected for  crossover: 

 

Parent 1 (0.3) (1.4) (0.2) (7.4) 

Parent 2 (0.5) (4.5) (0.1) (5.6) 

 

 

Applying the above two equations and assuming the weighting factor a = 

0.7, applying above equations, we get two resulting offspring. The possible 

set of offspring after arithmetic crossover would be: 

 

Offspring 1 (0.36) (2.33) (0.17) (6.87) 

 

Offspring 2 (0.402) (2.981) (0.149) (5.842) 

 

39 



443 
 

SC – GA - Operators 

ii Heuristic 
 

Heuristic crossover operator uses the fitness values of the two parent 

chromosomes to determine the direction of the search. 

 

The offspring are created according to the equations: 

 

Offspring1 = BestParent + r * (BestParent − WorstParent) 

 

Offspring2 = BestParent 

 

where r is  a  random  number  between 0 and 1. 

 

 

It is possible that offspring1 will not be feasible. It can happen if r is 

chosen such that one or more of its genes fall outside of the allowable 

upper or lower bounds. For this reason, heuristic crossover has a user 

defined parameter n for the number of times to try and find an r that 

results in a feasible chromosome. If a feasible chromosome is not 

produced after n tries, the worst parent is returned as offspring1. 
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SC – GA - Operators 

3.3 Mutation 

 

After a crossover is performed, mutation takes place. 

 

Mutation is a genetic operator used to maintain genetic diversity from one 

generation of a population of chromosomes to the next. 

 

Mutation occurs during evolution according to a user-definable mutation 

probability, usually set to fairly low value, say 0.01 a good first choice. 

 

Mutation alters one or more gene values in a chromosome from its initial 

state. This can result in entirely new gene values being added to the gene 

pool. With the new gene values, the genetic algorithm may be able to 

arrive at better solution than was previously possible. 

 

Mutation is an important part of the genetic search, helps to prevent the 

population from stagnating at any local optima. Mutation is intended to 

prevent the search falling into a local optimum of the state space. 

 

The Mutation operators are of many type. 

 

− one simple way is, Flip Bit. 

 

− the others are Boundary, Non-Uniform, Uniform, and Gaussian. 

 

The operators are selected based on the way chromosomes are encoded . 
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SC – GA - Operators 

■  Flip Bit 
 

The mutation operator simply inverts the value of the chosen gene. i.e. 0 

goes to 1 and 1 goes to 0. 

 

This  mutation  operator  can  only  be  used  for  binary  genes. 

 

 

Consider  the  two  original  off-springs  selected  for  mutation. 

 

Original offspring 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 
 

Original offspring 2 

                
 

1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 
 

                 
 

Invert  the value of the chosen gene as 0 to 1 and  1 to 0  
 

The Mutated  Off-spring produced are :           
 

Mutated offspring 1 

                
 

1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 
 

Mutated offspring 2 

                
 

1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 
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• Boundary 
 

The mutation operator replaces the value of the chosen gene with either 

the upper or lower bound for that gene (chosen randomly). 

 

This mutation operator can only be used for integer and float genes. 

 

• Non-Uniform 
 

The mutation operator increases the probability such that the amount of 

the mutation will be close to 0 as the generation number increases. This 

mutation operator prevents the population from stagnating in the early 

stages of the evolution then allows the genetic algorithm to fine tune the 

solution in the later stages of evolution. 

 

This mutation operator can only be used for integer and float genes. 

 

• Uniform 
 

The mutation operator replaces the value of the chosen gene with a 

uniform random value selected between the user-specified upper and 

lower bounds for that gene. 

 

This mutation operator can only be used for integer and float genes. 

 

• Gaussian 
 

The mutation operator adds a unit Gaussian distributed random value to 

the chosen gene. The new gene value is clipped if it falls outside of the 

user-specified lower or upper bounds for that gene. 

 

This mutation operator can only be used for integer and float genes. 

 

■  Basic Genetic Algorithm : 
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Examples to demonstrate and explain : Random population, Fitness, Selection, 

Crossover, Mutation, and Accepting. 

 Example 1 :  

Maximize the function f(x) = x2  over the range of integers from 0 . . . 31. 

 

Note : This function could be solved by a variety of traditional methods 

such as a hill-climbing algorithm which uses the derivative. One way is to 

: 

 

− Start from any integer x in  the domain of f 

 

− Evaluate  at  this  point x the  derivative f’ 

 

− Observing that the derivative is +ve, pick a new x which is at a small 

distance in the +ve direction from current x 

 

− Repeat until x = 31 

 

See,  how  a  genetic  algorithm  would  approach  this  problem ? 

 

Genetic Algorithm approach to problem - Maximize the function f(x) = x2 

 

1. Devise a means to represent a solution to the problem :
 

 

Assume,  we  represent  x with  five-digit  unsigned  binary  integers.
 

2. Devise a heuristic for evaluating the fitness of any particular solution :
 

 

The function f(x) is simple, so it is easy to use the f(x) value itself to rate 

the fitness of a solution; else we might have considered a more simpler 

heuristic that would more or less serve the same purpose.
 

3. Coding -  Binary and the  String length :
 

 



449 
 

GAs often process binary representations of solutions. This works well, 

because crossover and mutation can be clearly defined for binary solutions. A 

Binary string of length 5 can represents 32 numbers (0 to 31).
 

4. Randomly generate a set of solutions :
 

 

Here, considered a population of four solutions. However, larger populations 

are used in real applications to explore a larger part of the search. Assume, 

four randomly generated solutions as : 01101, 11000, 01000, 10011. These 

are chromosomes or genotypes.
 

5. Evaluate the fitness of each member of the population :
 

 

The calculated fitness values for each individual are  -
 

 

(a) Decode the individual into an integer (called phenotypes), 

 

 01101 →  13; 

11000 

→ 24; 01000 → 8; 10011 → 19; 

 (b) Evaluate the fitness according to f(x) = x 2 ,    

 
13 

→ 169; 
24 

→ 576; 8 →  64;   19 → 361. 

 (c) Expected count = N * Prob i ,  where N is the number of 

 individuals in the population called  population size, here N = 4. 

Thus the evaluation of the initial population summarized in table below . 

           

 String No Initial  X value Fitness   Prob i Expected count 

 i Population  (Pheno f(x) = x2  (fraction  N * Prob i 

  (chromosome) types)   of total)   

 1 0 1 1 0 1   13 169   0.14   0.58 

 2 1 1 0 0 0   24 576   0.49   1.97 

 3 0 1 0 0 0   8 64   0.06   0.22 

 4 1 0 0 1 1   19 361   0.31   1.23 

 Total (sum)      1170   1.00   4.00 

 Average      293   0.25   1.00 
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 Max      576   0.49   1.97 

 

Thus, the string no 2 has maximum chance of selection. 

 

SC – GA - Examples 

 

6.
 Produce a new generation of solutions by picking from the existing pool 

of solutions with a preference for solutions which are better suited than 

others: 

 

We divide the range into four bins, sized according to the relative fitness of 

the solutions which they represent. 

Strings Prob i Associated Bin 

     

0 1 1 0 1 0.14 0.0 . . . 0.14 

1 1 0 0 0 0.49 0.14 . . . 0.63 

0 1 0 0 0 0.06 0.63 . . . 0.69 

1 0 0 1 1 0.31 0.69 . . . 1.00 

 

By generating 4 uniform (0, 1) random values and seeing which bin they fall 

into we pick the four strings that will form the basis for the next generation. 

Random No Falls into bin Chosen string 

     

0.08 0.0 . . . 0.14 0 1 1 0 1 

0.24 0.14 . . . 0.63 1 1 0 0 0 

0.52 0.14 . . . 0.63 1 1 0 0 0 

0.87 0.69 . . . 1.00 1 0 0 1 1 

 

7.
 Randomly pair the members of the new generation 

Random number generator decides for us to mate the first two strings 

together and the second two strings together. 

8.
 Within each pair swap parts of the members solutions to create 

offspring which are a mixture of the parents : 
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For the  first pair of strings: 0 1 1 0 1  ,  1 1 0 0 0 

 

− We randomly  select  the crossover  point  to  be after the fourth digit. 

 

Crossing these two strings at that point yields: 

 

0 1 1 0 1 ⇒ 0 1 1 0 |1 ⇒ 0 1 1 0 0 

 

1 1 0 0 0  ⇒ 1 1 0 0 |0 ⇒ 1 1 0 0 1 

 

For the second  pair of strings: 1 1 0 0 0 , 1 0 0 1 1 

 

− We randomly select the crossover point to be after the second digit. 

 

Crossing these two strings at that point yields: 

 

1 1 0 0 0 ⇒ 1 1 |0 0 0 ⇒ 1 1 0 1 1 

 

1 0 0 1 1 ⇒ 1 0 |0 1 1 ⇒ 1 0 0 0 0 

9. Randomly mutate a very small fraction of genes in the population :
 

 

With a typical mutation probability of per bit it happens that none of the bits 

in our population are mutated.
 

10. Go back and re-evaluate fitness of the population (new generation) :
 

 

This would be the first step in generating a new generation of solutions. 

However it is also useful in showing the way that a single iteration of the 

genetic algorithm has improved this sample.
 

String No Initial X value Fitness Prob i Expected count 

 Population (Pheno f(x) = x2 (fraction  

 (chromosome) types)  of total)  

1 0 1 1 0 0 12 144 0.082 0.328 

2 1 1 0 0 1 25 625 0.356 1.424 

3 1 1 0 1 1 27 729 0.415 1.660 

4 1 0 0 0 0 16 256 0.145 0.580 
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Total (sum)   1754 1.000 4.000 

Average   439 0.250 1.000 

Max   729 0.415 1.660 

 

Observe that : 

1. Initial populations : At start  step 5 were 

0 1 1 0 1 , 1 1 0 0 0 , 0 1 0 0 0 , 1 0 0 1 1 

 

After one cycle, new populations, at step 10 to act as initial population 

0 1 1 0 0 , 1 1 0 0 1 , 1 1 0 11 , 1 0 0 0 0 

■  The total fitness has gone from 1170 to 1754 in a single generation. 
 

■  The algorithm has already come up with the string 11011 (i.e x = 27) as 

a possible solution. 

 

■  Example 2 : Two bar pendulum 
 

Two  uniform  bars  are  connected  by  pins  at A and B and  supported 

 

at  A.  Let  a 

 

A 

 

θ 1 
ℓ1 

 

 

W1 

 

 

horizontal  force P acts  at C. 

 

Given : Force P = 2,  Length of bars ℓ1 = 2 , 

y ℓ2 = 2,  Bar weights W1= 2, W2 = 2 . angles = Xi  

 

      Find : Equilibrium configuration of the system if 
 

 B   fiction at all joints are neglected ? 
 

    

ℓ2 
C 

 
 

   

 

 
 

θ 

2 Solution : Since there are two unknowns θ 1 and 

 

  
 

  P 
 

      θ 2 , we use 4 – bit binary for each unknown. 
 

 

 XU  - XL 90 - 0 
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W2 Accuracy = ----------- = --------- = 60 
 

Fig. Two bar pendulum 

24  - 1 15 
 

  
 

Hence, the binary coding and the corresponding angles Xi are given as 
 

XiU  - XiL 

where Si is  decoded Value of the i 
th

 chromosome. 

 

Xi = Xi
L + ----------- Si 

 

24  - 1   
 

e.g. the 6th chromosome binary code (0 1 0 1) would have the corresponding 
 

angle given by Si = 0 1 0 1 = 23 x 0 + 22 x 1 + 21 x 0 + 20 x 1 = 5 
 

90 - 0   
 

Xi = 0 + ----------- x 5 = 30  
 

15   
 

The binary coding and the angles are given in the table below. 

 

S. No. Binary code Angle S. No. Binary code Angle 

 Si Xi  Si Xi 

1 0 0 0 0 0 9 1 0 0 0 48 

2 0 0 0 1 6 10 1 0 0 1 54 

3 0 0 1 0 12 11 1 0 1 0 60 

4 0 0 1 1 18 12 1 0 1 1 66 

5 0 1 0 0 24 13 1 1 0 0 72 

6 0 1 0 1 30 14 1 1 0 1 78 

7 0 1 1 0 36 15 1 1 1 0 84 

8 0 1 1 1 42 16 1 1 1 1 90 

 

Note : The total potential for two bar pendulum is written as 

 

(c) = - P[(ℓ1 sinθ 1 + ℓ2 sinθ 2 )] - (W1 ℓ1 /2)cosθ 1 - W2 [(ℓ2 /2) cosθ 2 + ℓ1 cosθ 1] 

(Eq.1) 

 

Substituting the values for  P,  W1 ,  W2 , ℓ1 ,  ℓ2 all as 2 ,  we get , 

∏ (θ 1 , θ 2 

) 

= - 4 sinθ 1 - 6 cosθ 

1 

- 4 sinθ 

2 

- 2 cosθ 

2 = function f (Eq. 2) 
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θ 1 , θ 2  

lies between 0 and 90 both inclusive ie 0 ≤ θ 1 , θ 2 ≤ 90 (Eq. 3) 

Equilibrium configuration is the one which makes ∏ a minimum . 

 

Since the objective function is –ve , instead of minimizing the function f let us 

maximize -f = f ’ . The maximum value of f ’ = 8 when θ 1 and θ 2 are zero. 

 

Hence the fitness function F is given by F = – f – 7 = f ’ – 7 (Eq. 4) 
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First randomly generate 8 population with 8 bit strings as shown in table below. 

 

Population Population of 8 bit strings Corresponding Angles F = – f – 7 

No. (Randomly generated) (from table above)  

   θ 1   , θ 2  

1 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 1 0 0 0 0 0 12 6 2.1 

3 0 0 0 1 0 0 0 0 6 30 3.11 

4 0 0 1 0 1 0 0 0 12 48 4.01 

5 0 1 1 0 1 0 1 0 36 60 4.66 

6 1 1 1 0 1 0 0 0 84 48 1.91 

7 1 1 1 0 1 1 0 1 84 78 1.93 

8 0 1 1 1 1 1 0 0 42 72 4.55 

 

These angles and the  corresponding to fitness function are shown below. 

 

F=1 F=2.1 F=3.11 F=3.11 

θ 1=0 θ 1=12 θ 1=6 θ 1=12 

θ 2=0 θ 2=6 θ 2=30 θ 2=48 

F=4.6 F=1.91 F=1.93 F=4.55 

θ 1=36 θ 1=84 θ 1=84 θ 1=42 

θ 2=60 θ 2=48 θ 2=78 θ 2=72 

 

 

Fig. Fitness function F for various population 

 

The above Table and the Fig. illustrates that : 
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− GA begins with a population of random strings. 

 

− Then, each string is evaluated to find the fitness value. 

− The population is then operated by three operators – 

 

 

− The new population is further evaluated tested for termination. 

 

− If the termination criteria are not met, the population is iteratively operated by 

the three operators and evaluated until the termination criteria are met. 

 

− One cycle of these operation and the subsequent evaluation procedure is 

known as a Generation in GA terminology. 

 

49 



457 
 

Hybrid Systems 

 

Integration of NN FL GA 

 

What is Hybridization ? 

 

• Hybrid systems employ more than one technology to solve a problem. 
 

• Hybridization of technologies can have pitfalls and therefore need to be 

done with care. 

 

― If  one  technology  can  solve  a  problem  then  a  hybrid  technology 
 

ought to be used only if its application results in a better solution. 

 

• Hybrid systems have been classified as : 
 

− Sequential hybrid system: the technologies are used in pipelining 

fashion; 

 

− Auxiliary hybrid system: the one technology calls the other technology 

as subroutine; 

 

− Embedded hybrid system : the technologies participating appear to be 

fused totally. 

 

• Hybridization of fuzzy logic, neural networks, genetic algorithms has led 
 

to creation of a perspective scientific trend known as soft computing. 

 

− Neural networks mimic our ability to adapt to circumstances and learn 

from past experience, 
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− Fuzzy logic addresses the imprecision or vagueness in input and output, 

− Genetic algorithms are inspired by biological evolution, can systemize 

 

random search and reach to optimum characteristics. 

 

• Each of these technologies have provided efficient solution to wide range 

of problems belonging to different domains. However, each of these 

technologies has advantages and disadvantages. It is therefore 

appropriate that Hybridization of these three technologies are done so as 

to over come the weakness of one with the strength of other. 
 

ƒ  Introduction : 
 

Hybridization - Integration of NN , FL , and GA 

 

Fuzzy logic, Neural networks and Genetic algorithms are soft computing 

methods which are inspired by biological computational processes and nature's 

problem solving strategies. 

 

Neural Networks (NNs) are highly simplified model of human nervous system 

which mimic our ability to adapt to circumstances and learn from past experience. 

Neural Networks systems are represented by different architectures like single and 

multilayer feed forward network. The networks offers back proposition 

generalization, associative memory and adaptive resonance theory. 

 

Fuzzy logic addresses the imprecision or vagueness in input and output 

description of the system. The sets have no crisp boundaries and provide a 

gradual transition among the members and non-members of the set elements. 

 

Genetic algorithms are inspired by biological evolution, can systemize random 

search and reach to optimum characteristics. 
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Each of these technologies have provided efficient solution to wide range of 

problems belonging to different domains. However, each of these technologies 

suffer from advantages and disadvantages. 

 

It is therefore appropriate that Hybridization of these three technologies are 

done so as to over come the weakness of one with the strength of other. 

 

1.1 Hybrid Systems 

 

Hybrid systems employ more than one technology to solve a problem. 

 

Hybridization of technologies can have pitfalls  and therefore need 

to be  done  with  care.  If one technology  can solve  a problem then 

a hybrid  technology  ought to be used only  if its  application  results 

in  a  better  solution.  Hybrid  systems  have  been classified as 

Sequential , Auxiliary and Embedded.     

In   Sequential   hybrid   system,   the technologies are   used in 

pipelining fashion.        

 

In Auxiliary hybrid system, one technology calls the other technology as 

subroutine. 

 

In Embedded hybrid system, the technologies participating appear to be 

fused totally. 

• Sequential Hybrid System 
 

In  Sequential  hybrid  system,  the  technologies  are  used  in  pipelining 
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fashion. Thus, one technology's output becomes another technology's 

input and it goes on. However, this is one of the weakest form of 

hybridization since an integrated combination of technologies is not 

present. 

 

Example: A Genetic algorithm preprocessor obtains the optimal 

parameters for different instances of a problem and hands over the 

preprocessed data to a neural network for further processing. 

 

SC – Hybrid Systems - Introduction 

• Auxiliary Hybrid System 
 

In Auxiliary hybrid system, one technology calls the other technology as 

subroutine to process or manipulate information needed. The second 

technology processes the information provided by the first and hands it 

over for further use. This type of hybridization is better than the 

sequential hybrids. 

 

Example : A neuron-genetic system in which a neural network employs a 

genetic algorithm to optimize its structural parameters that defines its 

architecture. 

 

- Embedded Hybrid System 
 

In Embedded hybrid system, the technologies participating are integrated 

in such a manner that they appear intertwined. The fusion is so complete 

that it would appear that no technology can be used without the others for 

solving the problem. 

 

Example : A NN-FL hybrid system may have an NN which receives fuzzy 

inputs, processes it and extracts fuzzy outputs as well. 
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1.2  Neural Networks, Fuzzy Logic, and Genetic Algorithms Hybrids 

 

Neural Networks, Fuzzy Logic, and   Genetic Algorithms are three 

distinct technologies.       

Each of these technologies has advantages and disadvantages. It is 

therefore  appropriate that hybridization of  these three technologies are 

done so as  to over  come  the weakness  of one with the  strength 

of other.        

 

■  Neuro-Fuzzy Hybrid 
 

Neural Networks and Fuzzy logic represents two distinct methodologies to 

deal with uncertainty. Each of these has its own merits and demerits. 

 

Neural Networks : 

 

− Merits : Neural Networks, can model complex nonlinear relationships 

and are appropriately suited for classification phenomenon into 

predetermined classes. 

 

− Demerits :  Neural Network's  output,  precision is often limited to least 

 

squares errors; the training time required is quite large; the training 

data has to be chosen over entire range where the variables are 

expected to change. 

 

Fuzzy logic : 
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− Merits : Fuzzy logic system, addresses the imprecision of inputs and 

outputs defined by fuzzy sets and allow greater flexibility in formulating 

detail system description. 

 

Integration of NN and FL, called Neuro-Fuzzy systems, have the potential to 

extend the capabilities of the systems beyond either of these two technologies 

applied individually. The integrated systems have turned out to be useful in : 

 

− accomplishing mathematical relationships among many variables in a 

complex dynamic process, 

 

− performing mapping with some degree of imprecision, and 

 

− controlling nonlinear systems to an extent not possible with 

conventional linear control systems. 

 

There are two ways to do hybridization : 

 

− One, is to provide NNs with fuzzy capabilities, there by increasing the 

network's expressiveness and flexibility to adapt to uncertain 

environments. 

 

− Second, is to apply neuronal learning capabilities to fuzzy systems so 

that the fuzzy systems become more adaptive to changing 

environments. This method is called NN driven fuzzy reasoning. 

 

- Neuro-Genetic Hybrids 
 

The Neural Networks and Genetic Algorithms represents two distinct 

methodologies. 

 



463 
 

Neural Networks : can learn various tasks from examples, classify 

phenomena and model nonlinear relationships. 

 

Genetic Algorithms : have offered themselves as potential candidates for the 

optimization of parameters of NN. 

 

Integration of GAs and NNs has turned out to be useful. 

 

− Genetically evolved nets have reported comparable results against their 

conventional counterparts. 

 

− The gradient descent learning algorithms have reported  difficulties  in 

 

leaning the topology of the networks whose weights they optimize. 

 

− GA based algorithms have provided encouraging results especially with 

regard to face recognition, animal control, and others. 

 

− Genetic algorithms encode the parameters of NNs as a string of 

properties of the network, i.e. chromosomes. A large population of 

chromosomes representing many possible parameters sets, for the 

given NN, is generated. 

 

− GA-NN is also known as GANN have the ability to locate the 

neighborhood of the optimal solution quicker than other conventional 

search strategies. 

 

− The drawbacks of GANN algorithms are : large amount of memory 

required to handle and manipulate chromosomes for a given network; 

the question is whether this problem scales as the size of the networks 

become large. 

 
 

• 
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Fuzzy

-

Genetic Hybrids 

 

 

Fuzzy systems have been integrated with GAs. 

 

The fuzzy systems like NNs (feed forward) are universal approximator in 

the sense that they exhibit the capability to approximate general nonlinear 

functions to any desired degree of accuracy. 
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The adjustments of system parameters called for in the process, so that 

the system output matches the training data, have been tackled using 

GAs. Several parameters which a fuzzy system is involved with like 

input/output variables and the membership function that define the fuzzy 

systems, have been optimized using GAs. 

 

1.3 Typical Hybrid Systems 

 

The Systems considered are listed below. 

1. Genetic algorithm based back propagation 

network (Neuro Genetic Hybrid) 

2. Fuzzy back propagation network 

(Neuro – Fuzzy Hybrid with Multilayer Feed forward Network as the 

host architecture) 

3. Simplified Fuzzy ARTMAP 
 

(Neuro – Fuzzy Hybrid with Recurrent Network as the host architecture) 

4. Fuzzy Associative Memory 
 

( Neuro – Fuzzy Hybrid with single layer Feed forward architecture) 

5. Fuzzy logic controlled Genetic 

algorithm (Fuzzy – Genetic Hybrid) 

 

• Genetic Algorithm (GA) based Back Propagation Network (BPN) 
 

Neural networks (NNs) are the adaptive system that changes its structure based 

on external or internal information that flows through the network. Neural network 

solve problems by self-learning and self-organizing. 

 

Back Propagation Network (BPN) is a method of training multi-layer neural 

networks. Here learning occurs during this training phase. 
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The steps involved are: 

 

− The pattern of activation arriving at the output layer is compared with the 

 

correct output pattern to calculate an error signal. 

 

− The  error  signal   is   then   back-propagated  from  output  to  input  for 

 

adjusting the weights in each layer of the BPN. 

 

− The Back-Propagation searches on the error surface using gradient descent 

 

method to minimize error E = 1/2 Σ ( T j – O j )2 where T j is target output 

and O j is the calculated output by the network. 

Limitations of BPN : 

− BPN can recognize patterns similar to those they have learnt, but do not 

have the ability to recognize new patterns. 

− BPN must be sufficiently trained to extract enough general features 

applicable to both seen and unseen; over training to network may have 

undesired effects. 

 

Genetic Algorithms (GAs) are adaptive search and optimization algorithms, mimic 

the principles of nature. 

− GAs are different form traditional search and 

− Optimization exhibit simplicity, ease of operation, minimal requirements, and 

global perspective. 

Hybridization of BPN and GAs 

− The BPN  determines  its  weight  based  on  gradient  search  technique  and 

 

therefore it may encounter a local minima problem. 

 



467 
 

− GAs do not guarantee to find global optimum solution, but are good in 

finding quickly good acceptable solution. 

 

− Therefore, hybridization of BPN and GAs are expected to provide many 

advantages compare to what they alone can. 

 

The GA based techniques for determining weights in a BPN are explained next. 
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2.1 GA based techniques for determining weights in a BPN 

 

Genetic algorithms work with population of individual strings. 

 

The steps involved in GAs are: 

 

− each individual string represent a possible solution of the problem 

considered, 

 

− each individual string is assigned a fitness value, 

 

− high fit individuals participate in reproduction, yields new strings as 

 

offspring and they share some features with each parents, 

 

− low fit individuals are kept out from reproduction and so die, 

 

− a  whole  new  population  of  possible  solutions to  the  problem  is 

 

generated by selecting high fit individuals from current generation, 

 

− this  new  generation  contains  characteristics  which  are  better  than 

 

their ancestors, 

 

− processing  this  way  after  many generation,  the  entire  population 

 

inherits the best and fit solution. 

 

However, before a GA is executed : 

 

− a suitable coding for the problem is devised, 
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− a fitness function is formulated, 

 

− parents have to be selected for reproduction and crossover to generate 

offspring. 

 

All these aspects of GAs for determining weights of BPN are illustrated in 

next few slides. 
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SC – Hybrid Systems – GA based BPN 

 

• 

 

Coding 

 

 

Assume a BPN configuration ℓ - m – n where 

 

− ℓ is input , m is hidden and n is output neurons. 

 

− number of weights to be determined are (ℓ + n) m. 

 

− each weight (gene) is a real number. 

 

− assume number of digits (gene length) in weight are d . 

 

− a string S represents weight matrices of input-hidden and the hidden-

output layers in a linear form arranged as row-major or column-major 

selected. 

 

− population  size  is  the  randomly  generated  initial  population  of  p 

 

chromosomes. 

 

Example :                
 

Consider a BPN configuration ℓ - m – n where ℓ = 2 is input , m = 2 is 
 

hidden and n = 2 is output neuron.         
 

Input neuron Hidden neurons output neurons − number of weights is (ℓ + n) m 
 

   W11 V11      = ( 2 + 2) . 2 = 8    
 

 1    1    1   

− each weight is real number and 

 

   

W12 V12 

     
 

               
 

Inputs 

 W21   V21 

Outputs 

assume number of digits in 
 

             
 

   W22  V22      weight are d = 5    
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2 

             
 

    2    2   − string S representing   
 

Input layer Hidden layer  output layer chromosome of weights is 8 x 5 
 

   

Fig. BPN with 2 – 2 - 2 

   = 40 in length    
 

             
 

            − Choose a population size p = 40 
 

            ie choose 40 chromosomes 
 

Gene  Gene Gene  Gene Gene  Gene  Gene  Gene 
 

←  k=0 

→ ← 

k=1 →   
← k=2 → ← 

k=3 →   
← 

k=4 →   
← 

k=5 

→ ← k=6 → ← k=7 → 
 

 

 

84321 46234 78901 32104 42689 63421 46421 87640 

 

 

Chromosome  

 

 

32478 76510 02461 84753 64321 14261 87654 12367 

 

Chromosome 

 

 

Fig. Some randomly generated chromosome made of 8 genes 

representing 8 weights for BPN 

 

17 



472 
 

SC – Hybrid Systems – GA based BPN 

• Weight Extraction 
 

Extract weights from each chromosomes, later to determine the fitness 

values. 

 

Let x1 , x2 , . . . . x d ,  . . . .  x L  represent a chromosome and 
 

Let xkd+1 , xkd+2 , . . x(k + 1)d  represent kth gene (k ≥ 0) in the chromosomes. 
 

The actual weight wk is given by       
 

 

+ 

xkd+2 10
d-2 + xkd +3 10

d-3  + . . . + x(k + 1)d , if 5 ≤ xkd +1 ≤  9 
 

    10d-2       
 

wk =  

xkd +2 10
d-2   + xkd +3 10

d-3  + . . . + x(k + 1)d 

 

if 

  
 

    , 0 ≤ xkd +1 < 5 
 

      10d-2       
 

Example : [Ref Fig. BPN previous slide]       
 

The Chromosomes are stated in the Fig. The weights extracted from  all 
 

the eight  genes are :        
 

 

 

• Gene 0 :  84321 , 
 

Here we have, k = 0 , d = 5 ,  and  xkd +1 is x1  such that 
 

5 ≤  x1 = 8 ≤  9. Hence, the weight extracted is 
 

W0 = + 

4 x 103  + 3 x 102   + 2 x 10  + 1 

= +4.321 

 

 3 
 

  10  
 

 

■ Gene 1 :  46234 , 
 

Here we  have, k = 1 , d = 5 ,  and xkd +1  is x6  such that 
 



473 
 

0 ≤ x6 = 4 ≤  5. Hence, the weight extracted is 
 

W1 = − 

6 x 103 + 2 x 102   + 3 x 10  + 4 

= − 6.234 

 

 103  
 

 

 

• Similarly for the remaining genes 
 

Gene 2 : 78901 yields W2 = + 8.901 

Gene 3 : 32104 yields W3 = − 2.104 

Gene 4 : 42689 yields W4 = − 2.689 

Gene 5 : 63421 yields W5 = + 3.421 

Gene 6 : 46421 yields W6 = − 6.421 

Gene 7 : 87640 yields W7 = + 7.640 

 

18 



474 
 

SC – Hybrid Systems – GA based BPN 

■  Fitness Function : 
 

A fitness is devised for each problem. 

 

Example : 

 

The matrix on the right, represents a  set of input I (I11 , I21) (T11 , T21) 
 

and output T for problem P to be solved. 

(I12 , I22) (T12 , T22) 
 

   
 

Generate initial population P0  of size p = 40. 

(I13 , I23) (T13 , T23) 
 

   
 

Let C0
1 , C0

1 , . . . , C0
40  represent the 40 chromosomes.   

 

Let 

   

0
1 , 

  

0
2  , . . . . 

  

0
40 be the weight sets extracted, using the Eq. 

 

 w  w w 
 

in the previous slides, from each of the chromosome C0
i , i = 1, 2, . . . , 40 . 

 

Let 

   

01 , 

 

0
2    , 

 

03 be the calculated outputs of BPN. 

 
 

  o o o  
 

Compute root mean square error :     
 

 
 

E 1 = (T11 – O11)2 + (T21 – O21)2 , 

 

E 2 = (T12 – O12)2 + (T22 – O22)2 

 

E3 = (T13 – O13)2 + (T23 – O23)2 

 

The root mean square of error is 

 

E = [(E1 + E2  + E3) / 3 ] 1/2 

 

Compute Fitness F1  : 
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The fitness for the chromosome 

F1 

 

 

C01 

 

 

is given by 

 
 

F1 

 

= 1 / E 

 

. 

 

 

Similarly, find the fitness F2  for the chromosome 

 

so on the fitness Fn for the chromosome C0n 

 

C02 

 
 

and 
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Algorithm 

 

{                          
 

Let ( 

    

, 

    

) , i = 1 , 2 , . . . , N represents the input-output pairs of the 

 

Ii    Ti 
 

problem to be solved by BPN with configuration ℓ - m – n ; where 
 

               

and 

    
 

  I =  (I1i , I2i , , . . . , I ℓ i )      
 

   

i  = (T1i , T2i , , . . . , Tn i ) 

       
 

  T        
 

For each chromosome C i ,  i = 1 , 2 , . . . , p belonging to current the 
 

population   P i whose size is p        
 

{                          
 

Extract weights 

  

form C i 
 
using Eq. 2.1 in previous slide; 

 

  w i 
 

Keeping 

 

i as 

 

a fixed weight, train the BPN for the N input instances; 

 

w  
 

Calculate error E i for each of the input instances using the formula below 
 

E i =Σ 

 

( T j i – O j i )
2
  where 

  

i  is the output vector calculated by BPN; 

 

  O 
 

     j                     
 

Find the root mean square E  of the errors E i , i = 1 , 2 , . . . , N 
 

i.e. E = ( ( Σ E i ) / N ) 
1/2

        
 

            i              
 

Calculate the Fitness value  F i  for each of the individual string of the 
 

population as F i  = 1 / E        
 

}                          
 

Output F i  for each  C i ,  i = 1 , 2 , . . . , p ;    
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} 

 

Thus 

 

 

the 

 

 

Fitness values 

 

 

Fi 

 

 

for all chromosomes 

 

 

in 

 

 

the 

 

 

initial 

 

population are 
 

computed. The population size 

 
 

is 

 
 

p = 40, 

 

so 

 
 

F i , i = 1 

 

■  2 , . . , 40  are computed.  
 

A schematic for the computation of fitness values is illustrated below. 

 

Initial                             
 

Population of  Extracted                 
 

Chromosomes weight sets              
 

                              
 

 C0
1       w 01       

Training BPN 

     

Compute 

 

                       
 

 

C0
2 

         

0
2 

           

Fitness 

 

       

w 

                 
 

                         
 

 

---- 

 Extract 

  

--- 

  

Input   

       

 Output   

F i =1/E 

 

            
 

                      
 

                       

                      
 

                       

                       
 

 

---- 

 

weights 

    

weights 

          

Error E 

 
 

    

--- 

              
 

                       
 

 

C0
40 

                      
 

       

0
40 

                 

Fitness 

 

      W                  
 

                             

Values 
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Fig. Computation of Fitness values for the population 
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SC – Hybrid Systems – GA based BPN 

• Reproduction of Offspring 
 

Before the parent chromosomes reproduce offspring :   

First, form a mating pool by excluding  that chromosome C ℓ with least 

fitness F min and then replacing it with  a duplicate copy of C k with 

highest fitness F max ;      

i.e., the best fit individuals have multiple copies   while worst fit 

individuals die off.       

 

Having formed the mating pool, select parent pair at random. Chromosomes 

of respective pairs are combined using crossover operator. Fig. below shows 

: 

 

− two parent chromosomes Pa and Pb, 

 

− the two point crossover, 

 

− exchange of gene segments by the parent pairs, and 

 

− the offspring  Oa  and  Ob  are produced. 

 

   Pa      Pb 
 

Parent 

                     
 

                     
 

   

A 

        

B 

   
 

Chromosomes               
 

       
 

 Crossover  Crossover  Crossover Crossover 
 

 Point 1    Point 1  Point 1    Point 1 
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Offspring    B         A     
 

                       
 

     Oa      Ob 
 

 

 

Fig. Two – point crossover operator 
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Example : 

 

− Consider the initial population of chromosomes P0  generated,  with 

 

their fitness value F i , where i = 1 , 2 , . . , 40 , 

 

− Let F max = Fk be maximum and F min = F ℓ be minimum fitness value 

 

for 1 ≤ ℓ , k  ≤  40 where ℓ ≠ k 

 

− Replace all chromosomes having fitness value F min  with copies of 

 

chromosomes having fitness value F max
     

 

Fig.  below illustrates   the Initial population of  chromosomes  and  the 
 

formation of the mating pool.      
 

  Initial population P0   Mating pool 
 

           
 

   C0
1 F1    C0

1 F1  
 

   C0
2 F2  Max Fitness  C0

2 F2  
 

      value Fmax  

C0
k 

  
 

Chromosomes  C0
k Fk    Fk  

 

C0
1  to C0

40   C0
ℓ F ℓ    C0

ℓ F max  
 

      Min Fitness     
 

   ----   value F
min  ----   

 

   ----     ----   
 

   C0
40 F40    C0

40 F40  
 

   Fig. Formation of Mating pool   
 

   F min is replaced by  F 
max
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k Selection of Parent Chromosomes 
 

The previous slide illustrated Reproduction of the Offspring. 

 

Here, sample  "Selection Of Parents"  for the "Two Points Crossover" operator 

 

to produce Offspring Chromosomes are illustrated. 

 

Chromosomes - Mating Pool 

 

C1
1 C1

2 C1
k C1

ℓ C1
40 

 

 

 

 

 

 

 

Selected Parent Pairs 

 

Fig. Random Selection of Parent Chromosomes 

 

The Crossover Points of the Chromosomes are randomly chosen for each 

parent pairs as shown in the Fig. below. 

Chromosomes -Mating Pool 

 

C1
1 C1

2 C1
k C1

ℓ C1
40 

 

 

 

 

Crossover 

points 
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Selected Parent Pairs 

 

Fig. Randomly chosen Crossover points of Parent Chromosomes 

 

The Genes are exchanged for Mutation as shown in the Fig. below. 

 

Chromosomes -Mating Pool 

 

C1
1 C1

2 C1
k C1

ℓ C1
40 

 

 

 

 

 

C1
1 C1

2 C1
k C1

ℓ C1
40 

 

 

 

New Population P1 

 

Fig. New population P1  after application of two point Crossover operator 

 

Thus new population P1 is created comprising 40 Chromosomes which are 

the Offspring of the earlier population generation P0 . 
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SC – Hybrid Systems – GA based BPN 

• Convergence 
 

For any problem, if GA is correctly implemented, the population evolves over 

successive generations with fitness value increasing towards the global 

optimum. 

 

Convergence is the progression towards increasing uniformity. 

 

A  population  is  said  to  have  converged  when  95%  of  the  individuals 

 

constituting the population share the same fitness value. 

 

Example : 

 

Let a population P1 undergoes the process of selection, reproduction, 

 

and crossover. 

 

− the fitness values for the chromosomes in P1  are computed. 

 

− the best individuals replicated and the reproduction carried out using two-

point crossover operators form the next generation P2 of the 

chromosomes. 

 

− the  process  of  generation  proceeds  until  at  one  stage  95%  of  the 

 

chromosomes in the population Pi  converge to the same fitness value. 

 

− at that stage, the weights extracted from the population Pi are the final 

weights to be used by BPN. 
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• Fuzzy Back Propagation Network 
 

Neural Networks and Fuzzy logic (NN-FL) represents two distinct methodologies 

and the integration of NN and FL is called Neuro-Fuzzy systems. 

 

Back Propagation Network (BPN) is a method of training multi-layer neural 

networks where learning occurs during this training phase. 

 

Fuzzy Back Propagation Network (Fuzzy-BPN) is a hybrid architecture. It is, 

Hybridization of BPN by incorporating fuzzy logic. 

 

Fuzzy-BPN architecture, maps fuzzy inputs to crisp outputs. Here, the Neurons 

uses LR-type fuzzy numbers. 

 

The Fuzzy-Neuron structure, the architecture of fuzzy BP, its learning 

mechanism and algorithms are illustrated in next few slides. 

 

 

3.1  LR-type Fuzzy Numbers 

 

The LR-type fuzzy number are special type of representation of fuzzy 

numbers. They introduce functions called L and R. 

 

• Definition    

~ 

           
 

               
 

A fuzzy member M is of L-R type  if and only if  
 

   

L 

m – x  

for x ≤ m , α  0 

  
 

µ ~ (x) = 

  

α 

   
 

              
 

M   
R 

m – x 
for x ≤ m , β  0 
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β 

   
 

                 
 

where  L    is a left reference         
 

 R    is a right reference, ~      
 

  m ,   is called mean of   M is a real number,  
 

α , β   are  left and right spreads respectively. 

~ 

 

 

µ ~ 

  

is the membership function of fuzzy member 

 

   M 
 

   M               
 

The functions L and R are defined  as follows:  
 

L 

m – x 

 

= max ( 0 , 1 - 

m – x 

) 

 
 

        
 

 

α 

    

α 

    
 

                
 

R 

m – x 

  

= max ( 0 , 1 - 

m – x 

) 

 
 

         
 

 

α 

     

α 

    
 

                
 

LR-type fuzzy number M
~

 can be represented as (m, α, β) LR  shown below. 
 

    1            
 

 

 

Member ship 

deg µ ~ (x) 

M 

 

 

00  

 

α m,   β 

 

x 

 

 

 

 
 

Fig. A triangular fuzzy number (m, α, β). 
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Note : If α and β are both zero, then L-R type function indicates a crisp 

value. The choice of L and R functions is specific to problem. 
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• Operations on LR-type Fuzzy Numbers 

Let 

~ 

= (m, α  , β) LR and 

~ = (n, γ , δ) 

LR be  two L R-type fuzzy 

 

M N 
 

 

numbers. The basic operations are 

 

• Addition 
 

(m, α  , β) LR  (n, γ , δ) LR  = (m + n, α  + γ , β + δ ) LR 

 

• Substraction 
 

(m, α  , β) LR   (n, γ , δ) LR  = (m - n, α  + δ , β + γ  ) LR 

 

■ Multiplicaion 
 

(m, α  , β) LR   (n, γ , δ) LR = (mn , mγ + nα  , mδ + nβ) LR for m≥ 0 , 

n≥ 0 

 

(m, 

α 

 

 

(m, 

α 

 

n<0 

 

 

, β) LR , 

β) LR 

 

 

 (n, 

γ  

(n, γ 

 

 

, δ) LR = (mn , mα  - mδ , nβ - mγ ) RL for m<0 , n≥ 0 

 

, δ) LR = (mn , - nβ - mδ , -nα  - mγ ) LR for m<0 , 

 

■ Scalar Multiplicaion 
 

λ*(m, α  , β) LR  = (λm, 

λα 

 

 

, λβ) LR , 

 

 

∀ 

 

 

λ 

 

 

≥ 

 

 

0 

 

 

, 

 

 

λ 

∈ 

 

 

R 

 

 

λ*(m, 

α 

 
 

, β) LR 

 
 

= (λm, -

λα 

 
 

, -λβ) RL , 

 
 

∀ 

 
 

λ < 0 

 
 

, 

 
 

λ 

∈ 

 
 

R 



489 
 

 



490 
 

SC – Hybrid Systems – Fuzzy BPN 

■  Fuzzy Neuron 
 

The fuzzy neuron is the basic element of Fuzzy BP network. Fig. below 

shows the architecture of the fuzzy neuron. 

 

 
 

The fuzzy neuron  computes the crisp output given by  
 

O = f (NET) = f 

  n ~  ~ 

)) where 

~ 

= (1, 0, 0) is the bias. 

 

( CE ( Σ  Wi  . Ii I0 
 

    i=1        
 

Here, the fuzzy weighted summation is given by   
 

~ 

= 

n ~  

▪ 

~ 

is first computed and 

 
 

net Σ  Wi  Ii  
 

  i=0  

~ 

      
 

 

= 

   

) is computed next 

  
 

NET CE ( net   
 

The function CE is the  centroid of  triangular  fuzzy  number,  that has 
 

m as mean and α , β as left and right spreads explained before, can 
 

be  treated as defuzzification  operation,  which  maps  fuzzy  weighted 
 

summation to crisp value.       
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~ ~ 

, 

~ 

, 

~  

) is 

    
 

If  net = ( netm netα netβ the fuzzy weighted summation 
 

Then function CE is given by      
 

~   ~  ~  ~ ~  ~ ~ 
 

CE ( net ) = CE ( netm 
,

 
net
α , 

net
β 

) = netm + 1/3 ( 
netβ – netα  ) = NET 

 

The function f is a sigmoidal function that performs nonlinear mapping 

between the input and output. The function f is obtained as : 

 

f (NET) = 1 / ( 1 + exp ( - NET ) ) = O is final crisp output value. 

■  Architecture of Fuzzy BP 
 

Fuzzy Back Propagation Network (BP) is a 3-layered feed forward 

architecture. The 3 layers are: input layer, hidden layer and output layer. 

Considering a configuration of ℓ-input neurons, m-hidden neurons and n-

output neurons, the architecture of Fuzzy BP is shown below. 
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SC – Hybrid Systems – Fuzzy AM 

• Fuzzy Associative Memory 
 

 

A fuzzy logic system contains the sets used to categorize input data (i.e., 

fuzzification), the decision rules that are applied to each set, and then a way 

of generating an output from the rule results (i.e., defuzzification). 

 

In the  fuzzification stage,   a data  point  is  assigned  a degree  of 

membership (DOM) determined by a membership function. The member- 

ship function is often a triangular function centered at a given point. 

The Defuzzification is the name for  a procedure to  produce a real 

(non-fuzzy) output .        

Associative Memory is a type of memory with a generalized addressing 

method. The address is not the same as the data location, as in 

traditional memory. An associative memory  system stores mappings 

of specific input representations  to  specific  output  representations. 

Associative memory allows a fuzzy rule base to be stored.  The inputs  are 

the degrees of membership, and the outputs are the fuzzy system’s output. 

 

 

Fuzzy Associative Memory (FAM) consists of a single-layer feed-forward 

fuzzy neural network that stores fuzzy rules "If x is Xk then y is Yk" by means 

of a fuzzy associative matrix. 

 

FAM has many applications; one such application is modeling the 

operations of washing machine. 
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The problem indicates, that there are two inputs and one-output 

variables. The inference engineer is constructed based on fuzzy rule : 

 

“ If < input variable > AND < input variable > 

THEN < output variable >” 

 

According to the above fuzzy rule, the Fuzzy Associative Memory 

(FSM) of X, Y, and T variables are listed in the Table below. 

 

Washing time (T) 

Weight (X) 
 

   
 

  S M L 
 

     
 

 S M L L 
 

Stream (Y) 

    
 

M S M L 
 

     
 

 L S S L 
 

     
 

 

Table 1. Fuzzy associative memory (FSM) of Washing Machine 

 

 

■ Operations : To wash the clothes − 

Turn on the power, 
 

 The machine automatically detects the weight of the clothes as 

(X) = 3.2 K.g. , 

 

− The machine adjusts the water stream (Y) to 32 liter/min., 
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• Fuzzy Representation : 
 

The fuzzy sets representation, while X = 3.2 Kg and Y = 32 liter/min., 

according to the membership functions, are as follows: 

The fuzzy set of X3.2 Kg    = { 0.8/S, 0.2/M, 0/L } 
 

The fuzzy set of Y32 liters/min. = { 0.4/S, 0.8/M, 0/L } 
 

 

■ Defuzzification 

 

The real washing time is defuzzied by the Center of gravity (COG) 

defuzzification formula. The washing time is calculated as : 

 

Z COG  =  Σn
 µc (Z j ) Z j  /  Σn

 µc (Z j ) where 

j=1 j=1   

 

j = 1, . . . , n , is the number of quantization levels of the output, 

 

Z j 

 

 

is the control output at the quantization level 

 

 

j , 

 

 

µc (Z j ) 

 

 

represents its membership value in the 

 

 

output fuzzy set. 

 

 

Referring to Fig in the previous slide and the formula for COG, we 

get the fuzzy set of the washing time as w = { 0.8/20, 0.4/35, 0.2/60 

} The calculated washing time using COG formula T = 41.025 min. 
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■  Simplified Fuzzy ARTMAP 
 

ART is a neural network topology whose dynamics are based on 

Adaptive Resonance Theory (ART). ART networks follow both 

supervised and unsupervised algorithms. 

 

− The Unsupervised ARTs are similar to many iterative clustering 

algorithms where "nearest" and "closer" are modified slightly by 

introducing the concept of "resonance". Resonance is just a matter 

of being within a certain threshold of a second similarity measure. 

 

 

− The Supervised ART algorithms that are named with the suffix 

"MAP", as ARTMAP. Here the algorithms cluster both the inputs and 

targets and associate two sets of clusters. 

 

The basic ART system is an unsupervised learning model. 

The ART systems have many variations : ART1, ART2, Fuzzy ART, 

ARTMAP. 

The simplest variety of ART networks, accepting only binary 

inputs. 

It extends network capabilities to support continuous inputs. 

 

ARTMAP : Also known as Predictive ART. It combines two slightly modified 

ART-1 or ART-2 units into a supervised learning structure. Here, the first 

unit takes the input data and the second unit takes the correct output 

data, then used to make the minimum possible adjustment of the 

vigilance parameter in the first unit in order to make the correct 

classification. 

 

 

ART2 : 

 

ART1: 
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The Fuzzy ARTMAP model is fuzzy logic based computations incorporated 

in the ARTMAP model. 

Fuzzy ARTMAP is neural network architecture for conducting supervised 

learning in a multidimensional setting. When Fuzzy ARTMAP is used on a 

learning problem, it is trained till it correctly classifies all training data. 

This feature causes Fuzzy ARTMAP to ‘over-fit’ some data sets, especially 

those in which the underlying pattern has to overlap. To avoid the 

problem of ‘over-fitting’ we must allow for error in the training process. 

 

• Supervised ARTMAP System 
 

ARTMAP is also known as predictive ART. The Fig. below shows a 

supervised ARTMAP system. Here, two ART modules are linked by an 

 

inter-ART module called the Map Field. The Map Field forms predictive 

associations between categories of the ART modules and realizes a 

match tracking rule. If ARTa and ARTb are disconnected then each 

module would be of self-organize category, groupings their respective 

input sets. 

Fig. Supervised ARTMAP system 
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In supervised mode, the mappings are learned between input vectors 

a and b. A familiar example of supervised neural networks are feed-

forward networks with back-propagation of errors. 

• Comparing ARTMAP with Back-Propagation Networks 
 

ARTMAP networks are self-stabilizing, while in BP networks the new 

information gradually washes away old information. A consequence of 

this is that a BP network has separate training and performance 

phases while ARTMAP systems perform and learn at the same time 

− ARTMAP networks are designed to work in real-time, while BP 

networks are typically designed to work off-line, at least during 

their training phase. 
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− ARTMAP systems can learn both in a fast as well as in a slow match 

configuration, while, the BP networks can only learn in slow 

mismatch configuration. This means that an ARTMAP system learns, 

or adapts its weights, only when the input matches an established 

category, while BP networks learn when the input does not match 

an established category. 

− In BP networks there is always a danger of the system getting 

trapped in a local minimum while this is impossible for ART 

systems. However, the systems based on ART modules learning 

may depend upon the ordering of the input patterns. 

 

 


